Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Blunted reward learning and reward-related activation within the corticostriatal-midbrain circuitry have been implicated in the pathophysiology of anhedonia and depression. Unfortunately, the search for more efficacious interventions for anhedonic behaviors has been hampered by the use of vastly different preclinical and clinical assays. In a first step in addressing this gap, in the current study, we used event-related potentials and spectral analyses in conjunction with a touchscreen version of the rodent Probabilistic Reward Task (PRT) to identify the electrophysiological signatures of reward learning in rats. We trained 11 rats (5 females and 6 males) on the rodent touchscreen-based PRT and subsequently implanted them with deep electrodes in the anterior cingulate cortex (ACC) and nucleus accumbens (NAc) for local field potentials recordings during the PRT. Behaviorally, the expected responsivity-to-reward profile was observed. At the electrophysiological level, we identified a negative amplitude deflection 250-500 ms after feedback in the ACC and NAc electrodes, as well as power increase in feedback-locked delta (1-5 Hz) and alpha/beta (9-17 Hz) bands in both electrodes for rewarded trials. Using a reverse-translational approach, we identified electrophysiological signatures of reward learning in rats similar to those described in humans. These findings and approaches might provide a useful translational platform to efficiently evaluate novel therapeutics targeting anhedonia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938210 | PMC |
http://dx.doi.org/10.1038/s41386-023-01532-4 | DOI Listing |