Determination of chloramphenicol in food using nanomaterial-based electrochemical and optical sensors-A review.

Food Chem

Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China. Electronic address:

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chloramphenicol (CAP) is a widely used antibiotic for the treatment of sick animals owing to its potent action and low cost. However, the accumulation of CAP in the human body can cause irreversible aplastic anemia and hematopoietic toxicity. Accordingly, development of various analytical techniques for the rapid detection of CAP in animal products and the related processed foods is necessary. Among these analytical techniques, electrochemical and optical sensors offer many advantages for CAP detection, including high sensitivity, simple operation and fast analysis speed. In this review, we summarize recent application of carbon nanomaterials, metal nanoparticles, metal oxide nanoparticles and metal organic framework in the development of electrochemical and optical sensors for CAP detection (2010-2022). Based on the advantages and disadvantages of nanomaterials, electrochemical and optical sensors are summarized in this review. The preparation and synthesis of electrochemical and optical sensors and nanomaterials in the field of rapid detection are prospected.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.135434DOI Listing

Publication Analysis

Top Keywords

electrochemical optical
20
optical sensors
16
analytical techniques
8
rapid detection
8
cap detection
8
nanoparticles metal
8
electrochemical
5
optical
5
cap
5
determination chloramphenicol
4

Similar Publications

Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.

View Article and Find Full Text PDF

Advancements and perspectives on organelle-targeted fluorescent probes for super-resolution SIM imaging.

Chem Sci

September 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China

As a cutting-edge super-resolution imaging technique, structured illumination microscopy (SIM) has been widely used in cell biology research, especially in the analysis of subcellular organelles and monitoring of their dynamic processes. Through multiple illumination and reconstruction processes, SIM breaks through the resolution limitations of traditional microscopes and can observe the fine structures within cells in real time with nanoscale resolution. This provides strong technical support for in-depth analyses of molecular mechanisms, organelle functions, signaling networks, and metabolic regulatory pathways within cells.

View Article and Find Full Text PDF

Wearable bioelectronics for skin cancer management.

Biomaterials

August 2025

Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA. Electronic address:

Wearable bioelectronics have transformed modern biomedical applications by enabling seamless integration with biological tissues, providing continuous, comprehensive, and personalized healthcare. Skin cancer, particularly melanoma, poses a significant clinical challenge due to its high metastatic potential and associated mortality. Traditional diagnostic approaches face limitations in accuracy, accessibility, and reproducibility, while existing treatments are often constrained by systemic toxicity and therapeutic resistance.

View Article and Find Full Text PDF

Unraveling the mysteries of food allergens: aptamer-driven detection and suppression strategies.

Food Res Int

November 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China. Electronic address:

Food allergies pose a significant global health challenge, underscoring the need for effective detection and suppression methods. Conventional detection methods, such as ELISA and PCR, are often limited by challenges related to sensitivity and specificity, particularly when applied to complex food matrices. This review presents an overview of recent advancements in aptamer-based technologies, which present a promising approach for food allergen detection due to their high specificity and affinity for target molecules.

View Article and Find Full Text PDF

The most significant challenge facing magnesium alloy stents is their ability to withstand complex deformation during their application. To gain a deeper understanding of the impact of stent deformation on the protective capabilities of the coating, this paper presents an amplified stent deformation model. The models were coated with either a low elongation material-Poly(D, L-lactide) (PDLLA) or a high elongation material-Poly(butylene adipate-co-terephthalate) (PBAT), followed by the application of a rapamycin-loaded PLGA as drug-eluting layer.

View Article and Find Full Text PDF