Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To study the effect of implant angulation on 3D linear and absolute angular distortions of implant analogs in printed resin models and conventional stone casts.

Materials And Methods: Three sectional master models with two implants with total inter-implant angulations of 0°, 10°, and 20° were fabricated. For each master model, five conventional stone casts (CS) and printed resin models (PM) were fabricated (n = 5). Test models were made with nonsplinted impression copings and open tray polyether impressions for the CS groups and scan bodies scanned using an intraoral scanner for the PM groups. The physical positions of the implants and implant analogs were measured with a coordinate measuring machine. 3D linear distortion (ΔR) and absolute angular distortion (Absdθ) defined the 3D positional accuracy of the analogs in the test models. Univariate ANOVA was used to analyze data followed by post hoc tests (Tukey HSD, α = 0.05).

Results: Mean ΔR was significantly greater for PM10 (73.5 ± 8.9 µm) and PM20 (65.5 ± 33.3 µm) compared to CS0 (16.8 ± 14.1 µm), CS10 (22.2 ± 13.0 µm), CS20 (15.6 ± 19.9 µm), and PM0 (23.9 ± 16.1 µm). For Absdθ, there were no significant differences between test groups.

Conclusions: With conventional stone casts, implant angulation had no significant effect on 3D linear and absolute angular distortions. Amongst printed resin models test groups, angulated implants had significantly greater ΔR. Amongst angulated implants test groups, printed resin models had significantly greater ΔR than conventional stone casts. Compared to the master model, all test groups, regardless of inter-implant angulation, produced greater inter-analog distances.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jopr.13647DOI Listing

Publication Analysis

Top Keywords

printed resin
20
resin models
20
conventional stone
20
stone casts
16
implant analogs
12
implant angulation
12
absolute angular
12
test groups
12
positional accuracy
8
analogs printed
8

Similar Publications

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful analytical technique with a wide range of applications. To support the analysis of diverse and complex samples, various NMR tools and accessories have been created. Three-dimensional (3D) printing is an underutilized production method for NMR hardware, mainly due to the lack of H NMR background-free resins.

View Article and Find Full Text PDF

Microrobots are expected to push the boundaries of robotics by enabling navigation in confined and cluttered environments due to their sub-centimeter scale. However, most microrobots perform best only in the specific conditions for which they are designed and require complete redesign and fabrication to adapt to new tasks and environments. Here, fully 3D-printed modular microrobots capable of performing a broad range of tasks across diverse environments are introduced.

View Article and Find Full Text PDF

Strain sensors have received considerable attention in personal healthcare due to their ability to monitor real-time human movement. However, the lack of chemical sensing capabilities in existing strain sensors limits their utility for continuous biometric monitoring. Although the development of dual wearable sensors capable of simultaneously monitoring human motion and biometric data presents significant challenges, the ability to fabricate these sensors with geometries tailored to individual users is highly desirable.

View Article and Find Full Text PDF

Two-photon polymerization (TPP) enables the fabrication of intricate 3D microstructures with submicron precision, offering significant potential in biomedical applications like tissue engineering. In such applications, to print materials and structures with defined mechanics, it is crucial to understand how TPP printing parameters impact the material properties in a physiologically relevant liquid environment. Herein, an experimental approach utilizing microscale tensile testing (μTT) for the systematic measurement of TPP-fabricated microfibers submerged in liquid as a function of printing parameters is introduced.

View Article and Find Full Text PDF

A simplified digital workflow is described for a complete arch implant-supported prosthesis with the restoration of the vertical dimension of occlusion (VDO) using a 3-dimensionally printed interim prosthesis and an esthetic jaw incisor guide. After VDO definition and intraoral scanning, a screw-retained interim prosthesis was printed, clinically tested, and used to guide the fabrication of the definitive prosthesis. The approach showed predictable esthetic and functional results, though caution is needed in patients with parafunctional habits because of the limited strength of printed resins.

View Article and Find Full Text PDF