Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Herein, eight new NHC-based selenourea derivatives were synthesized and characterized by using spectroscopic method (H, F, and C NMR, FT-IR), and elemental analysis techniques. These compounds were synthesized by mixing benzimidazolium salts, potassium carbonate, and selenium powder in ethyl alcohol. Additionally, the molecular and crystal structures of the three compounds (, , and ) were determined using the single-crystal x-ray diffraction (XRD) method. Diffraction analysis demonstrated the partial carbon-selenium double-bond character of these compounds. All compounds were determined to be highly potent inhibitors for AChE and XO enzymes. The IC values for the compounds were found in the range of 0.361-0.754 μM for XO and from 0.995 to 1.746 μM for AChE. The DNA binding properties of the compounds were investigated. These compounds did not have a remarkable DNA binding property. Also, DPPH radical scavenging activities of the compounds were also investigated. Compounds (), (), (), and () exhibited more pronounced DPPH radical scavenging activity when compared to other compounds. Docking studies were applied by using AutoDock 4 to determine interaction mechanism of the selected compounds (), (), and (). The compound () has good binding affinity (-9.78 kcal/mol) against AChE, and (-6.86 kcal/mol) for XO target. Drug similarity properties of these compounds compared to positive controls were estimated and evaluated by ADMET analysis. Furthermore, molecular dynamics simulations have been applied to understand the accuracy of docking studies. These findings and the defined compounds could be potential candidates for the discovery and progress of effective medicine(s) for AChE and XO in the future.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2022.2163696DOI Listing

Publication Analysis

Top Keywords

compounds
14
compounds determined
8
dna binding
8
properties compounds
8
compounds investigated
8
investigated compounds
8
dpph radical
8
radical scavenging
8
docking studies
8
design synthesis
4

Similar Publications

Molecular Engineering Empowers Phenanthraquinone Organic Cathodes with Exceptional Cycling Stability for Lithium- and Aqueous Zinc-Ion Batteries.

Adv Sci (Weinh)

September 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, State Key Laboratory of Advanced Materials for Intelligent Sensing, Tianjin University, Tianjin, 300072, China.

Organic electrode materials have garnered great attention in recent years, owing to their resource sustainability, structural diversity, and superior compatibility with various ionic species. Among them, quinone-based compounds have attracted particular interest. Notably, compared with para-quinone analogs (e.

View Article and Find Full Text PDF

Access to Cyclic Aliphatic Sulfonyl Fluorides via Diels-Alder Cycloaddition.

J Org Chem

September 2025

Pharmaron Drug Discovery Services Europe, Pharmaron UK Ltd., West Hill Innovation Park, Hertford Road, Hoddesdon EN11 9FH, United Kingdom.

Sulfur(VI) fluoride exchange (SuFEx) compounds are gaining increasing attention due to their various applications. We present the Diels-Alder reaction of ethenesulfonyl fluoride and analogues to rapidly access cyclic and bicyclic SuFEx derivatives in moderate to good yields. These derivatives have been shown to be useful intermediates in a variety of synthetic transformations to expand the toolkit for the preparation of cyclic aliphatic sulfonyl fluorides.

View Article and Find Full Text PDF

Direct -Azidomethylation of Thiols with -Azidomethyldisulfonimides.

Org Lett

September 2025

United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.

A direct azidomethylation reaction at the sulfur atoms of thiols with -azidomethyldisulfonimides is presented, providing a facile and efficient approach for the synthesis of azidomethylated compounds with broad substrate scope and mild reaction conditions. Under optimized conditions using -azidomethyl-bis(4-trifluoromethylbenzene)sulfonimide as the azidomethyl source, various aliphatic and aromatic thiols furnish the corresponding -azidomethyl compounds in moderate to high yields. The reaction proceeds selectively at the mercapto group, even in substrates bearing polar functional groups.

View Article and Find Full Text PDF

Cefepime (FEP), a fourth-generation cephalosporin combined with tazobactam (TAZ), a β-lactamase inhibitor, is being developed by Wockhardt as a pharmacodynamically optimized fixed dose combination (FEP-2 g + TAZ-2 g) for the treatment of multidrug-resistant Gram-negative infections. To undertake an exposure-response analysis for establishing pharmacokinetic (PK)/pharmacodynamic (PD) targets, it is crucial to characterize the PK profile of compounds in surrogate compartments, such as plasma and lung, in clinically relevant animal infection models used to evaluate efficacy. In the current study, PKs of FEP and TAZ were assessed in plasma and in epithelial lining fluid (ELF) of neutropenic noninfected, lung-infected, and thigh-infected mice.

View Article and Find Full Text PDF

Activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL) is an aggressive cancer with poor response to standard chemotherapy. In search of new therapeutic leads, a library of 435 fractions prepared from the Irish marine biorepository was screened against 2 ABC-DLBCL cell lines (TMD8 and OCI-Ly10) and a non-cancerous control cell line (CB33). Active fractions are prioritized based on potency and selectivity.

View Article and Find Full Text PDF