Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wild edible plants, once consumed in times of famine or for health purposes, today represent an interesting dietary supplement, aimed at enriching local dishes and/or formulating healthy nutraceutical products. In fact, the broad content of different, and diversely bioactive, specialized metabolites therein suggests new scenarios of use which, in order to be as functional as possible, must maximize the bioactivity of these compounds while preserving their chemistry. In this context, based on a recent investigation on the metabolic profile of the organs of that highlighted that florets are abundant in flavonol glycosides and triterpene saponins, the freeze-drying encapsulation of their alcoholic extract (FE) into maltodextrin (MD) was investigated. FE-MD chemical composition was evaluated using Fourier Transform InfraRed spectroscopy (FTIR), while ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) techniques were employed to unravel FE compound preservation also during in vitro simulated digestion. The establishment of H-bonds between FE compounds and MD hydroxyl groups was in line with FE-MD biocompatibility in Caco-2 cells, while in vitro digestion mostly affected structural integrity and/or diversity. Flavonol compounds underwent deglycosylation and demethylation, while deacylation, beyond oxidation, involved triterpene saponins, which massively preserve their aglycone core.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822028PMC
http://dx.doi.org/10.3390/molecules28010199DOI Listing

Publication Analysis

Top Keywords

triterpene saponins
8
encapsulating vaill
4
vaill florets
4
florets uhplc-hrms
4
uhplc-hrms insights
4
insights bioactive
4
compounds
4
bioactive compounds
4
compounds preservation
4
preservation oral
4

Similar Publications

The therapeutic effects of various tonic traditional Chinese medicines on demyelinating diseases.

Metab Brain Dis

September 2025

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, Hubei, China.

Demyelinating diseases, a prevalent group of neurological disorders, lead to impaired nerve conduction and sensorimotor dysfunctions. Despite existing treatments demonstrating some efficacy, their limitations have driven research toward exploring natural remedies. This review summarizes the therapeutic potential of four traditional tonic Chinese herbal medicines-ginsenosides, deer antler polypeptides, resveratrol, and ginkgo leaf extracts-for demyelinating diseases.

View Article and Find Full Text PDF

The present investigation elucidates the therapeutic potential of glycyrrhizin, the predominant triterpene saponin isolated from (licorice), in the management of systemic lupus erythematosus (SLE), an autoimmune disorder characterized by multisystemic involvement and therapeutic recalcitrance. Comprehensive interrogation of multiple disease-specific databases facilitated the identification of crucial SLE-associated molecular targets and hub genes, with MAPK1, MAPK3, TP53, JUN, and JAK2 demonstrating the highest degree of network centrality. Subsequent molecular docking simulations and binding affinity assessments revealed compounds with exceptional complementarity to these pivotal molecular targets, establishing as a pharmacologically promising botanical source and glycyrrhizin as its principal bioactive constituent meriting comprehensive mechanistic investigation.

View Article and Find Full Text PDF

Acanthopanax sessiliflorus, belonging to the Araliaceae family, is used as medicinal herbs and dietary supplements, and can be consumed as seasoned vegetables, salads, pickles, functional tea, and wine. Their edible parts (shoots, leaves, fruis, and stems) are considered as a highly valuable food source with health benefits. The comparison of the qualitative and quantitative characteristics of functional compounds in these plant parts is still limited.

View Article and Find Full Text PDF

Development of three-dimensional boronate affinity dendritic mesoporous silica coupled with HPLC-CAD for selective determination of ginsenosides.

Mikrochim Acta

September 2025

State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound

The precise and selective determination of ginsenosides, pharmacologically diverse saponins abundant in Panax species, is crucial for their therapeutic development and stringent quality control. However, inherent challenges, including their weak ultraviolet absorption and the high polarity imparted by sugar moieties, complicate their determination. Addressing these limitations, this study introduces the first-time construction and application of a boronate affinity dendritic mesoporous silica nanomaterial (BA-DMSN) as a highly efficient adsorbent for ginsenoside pretreatment.

View Article and Find Full Text PDF

Panaxadiol acts as an HIF-1α inhibitor to suppress H9N2-induced inflammation.

Vet Microbiol

October 2025

School of Medicine, Shaoxing University, Shaoxing 312000, China; School of Medicine, Shanxi University of Chinese Medicine, Taiyuan 030000, China. Electronic address:

The H9N2 avian influenza virus (AIV) represents a considerable threat to both poultry industries and public health, not only due to its widespread prevalence but also because of its potential to facilitate the emergence of more virulent influenza strains through genetic reassortment. Recent studies have highlighted the pivotal role of hypoxia-inducible factor 1-alpha (HIF-1α) in viral pathogenesis, immune modulation, and the regulation of inflammatory responses, positioning it as a promising target for antiviral strategies. In this study, we identified that HIF-1α actively contributes to the inflammatory response triggered by H9N2 AIV infection in MH-S cells.

View Article and Find Full Text PDF