98%
921
2 minutes
20
The relationship between neuronal activity and computations embodied by it remains an open question. We develop a novel methodology that condenses observed neuronal activity into a quantitatively accurate, simple, and interpretable model and validate it on diverse systems and scales from single neurons in C. elegans to fMRI in humans. The model treats neuronal activity as collections of interlocking 1-dimensional trajectories. Despite their simplicity, these models accurately predict future neuronal activity and future decisions made by human participants. Moreover, the structure formed by interconnected trajectories-a scaffold-is closely related to the computational strategy of the system. We use these scaffolds to compare the computational strategy of primates and artificial systems trained on the same task to identify specific conditions under which the artificial agent learns the same strategy as the primate. The computational strategy extracted using our methodology predicts specific errors on novel stimuli. These results show that our methodology is a powerful tool for studying the relationship between computation and neuronal activity across diverse systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821456 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1010784 | DOI Listing |
Neurochem Res
September 2025
Biology and Health Laboratory, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco.
Parkinson's disease (PD) is characterized by impairments in motor control following the degeneration of dopamine-producing neurons located in the substantia nigra pars compacta. Environmental pesticides such as Paraquat (PQ) and Maneb (MB) contribute to the onset of PD by inducing oxidative stress (OS). This study evaluated the therapeutic efficacy of moderate physical activity (PA) on both motor and non-motor symptoms in a Wistar rat model of Paraquat and Maneb (PQ/MB) induced PD.
View Article and Find Full Text PDFInflammopharmacology
September 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Giza, Egypt.
The neuroprotective potential of tyrosine kinase inhibitors (TKIs), potent anticancer drugs, was verified against various neurodegenerative insults, but not Huntington's disease (HD). These promising outcomes were due to their ability to modulate various intracellular signalling pathways. Hence, the current study aimed to evaluate the neuroprotective effects of lapatinib and pazopanib in the 3-nitropropionic (3-NP)-induced HD model in rats.
View Article and Find Full Text PDFChaos
September 2025
Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil.
Neuronal heterogeneity, characterized by a multitude of spiking neuronal patterns, is a widespread phenomenon throughout the nervous system. In particular, the brain exhibits strong variability among inhibitory neurons. Despite the huge neuronal heterogeneity across brain regions, which in principle could decrease synchronization due to differences in intrinsic neuronal properties, cortical areas coherently oscillate during various cognitive tasks.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2025
Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia.
Purpose: To characterize corneal immune cell morphodynamics and nerve features, and define the in vivo immune landscape in older adults with human immunodeficiency virus (HIV) receiving antiretroviral therapy (ART), relative to healthy age-matched adults.
Methods: In this cross-sectional study, 16 HIV-positive individuals receiving ART and 15 age-matched controls underwent ocular surface examinations and functional in vivo confocal microscopy (Fun-IVCM). Time-lapsed videos were created to analyze corneal immune cells (T cells, dendritic cells [DCs], macrophages).
Invest Ophthalmol Vis Sci
September 2025
Center for Visual Science, University of Rochester, Rochester, NY, United States.
Purpose: Adaptive optics scanning light ophthalmoscopy (AOSLO) paired with intravitreal injection of a viral vector coding for the calcium indicator GCaMP has enabled visualization of neuronal activity in retinal ganglion cells (RGCs) at single cell resolution in the living eye. However, the inner limiting membrane (ILM) restricts viral transduction to the fovea in humans and non-human primates, hindering both therapeutic intervention and physiological study of the retina. To address this issue, we explored peeling the ILM before intravitreal injection to expand calcium imaging beyond the fovea in the living primate eye.
View Article and Find Full Text PDF