Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We demonstrate three typical mode-locking processes of a nonlinear amplifying loop mirror (NALM) fiber laser via a general nonlinear Schrödinger equation-based (GNLSE) simulation model. First, the pulse evolutions in the NALM cavity were separately simulated under asymmetric and weakly asymmetric conditions. We found that the splitting ratio and positions of the gain fiber can result in a suitable phase bias between clockwise and counter-clockwise beams, enabling the realization of a self-starting low-threshold operating condition. To assess the roles of the splitting ratio and gain in the mode-locking process, we simulated three pulse formation processes: in the soliton, stretched-pulse, and dissipative soliton mode-locking regimes. The simulation results show that the splitting ratio, gain, and dispersion directly influence the mode-locking condition and pulse characteristics, thereby providing effective quantified guidance for high-quality pulse generation. Finally, an experimental NALM oscillation operating under stretched pulse conditions was established to investigate the impact of the splitting ratio and pump power on the pulse characteristics. The experimental results prove that the splitting ratio, gain, and dispersion can be used to manipulate the mode-locking threshold, self-starting threshold, nonlinear effects, and pulse characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.476630 | DOI Listing |