Dissection of hubs and bottlenecks in a protein-protein interaction network.

Comput Biol Chem

Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India. Electronic address:

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Analysis of degree centrality in conjunction with betweenness centrality of proteins in a human protein-protein interaction network revealed three categories of centrally important proteins: a) proteins with high degree and betweenness (hub-bottlenecks denoted as MX), b) proteins with high betweenness and low degree (non-hub-bottlenecks/pure bottlenecks denoted as PB) and c) proteins with high degree and low betweenness (hub-non-bottlenecks/pure hubs denoted as PH). When subjected to a detailed statistical analysis of their molecular-level properties, the proteins belonging to each of these categories were found to be associated with distinct canonical molecular properties, i.e., "molecular markers". The MX proteins are a) conformationally versatile, mainly comprising of essential proteins, b) the targets for interactions by the proteins of viral and bacterial pathogens, c) evolutionally constrained, involved in multiple pathways, enriched with disease genes and d) involved in the functions such as protein stabilization, phosphorylation, and mRNA slicing processes. PB proteins are a) enriched with extracellular and cancer-related proteins, b) enriched with the approved drug targets and c) involved in cell-cell signaling processes. Finally, PH are a) structurally versatile, b) enriched with essential proteins primarily involved in housekeeping processes (transcription and replication). The fact that the proteins belonging to these three categories form three distinct sets in terms of their molecular properties reveals the existence of trichotomy among hubs and bottlenecks, and this knowledge is of paramount importance while prioritizing protein targets for further studies such as drug design and disease association studies based on their network centrality values.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2022.107802DOI Listing

Publication Analysis

Top Keywords

proteins
13
proteins high
12
hubs bottlenecks
8
protein-protein interaction
8
interaction network
8
three categories
8
high degree
8
denoted proteins
8
proteins belonging
8
molecular properties
8

Similar Publications

Comparative mitogenomics of the eulipotyphlan species (Mammalia, Eulipotyphla) provides novel insights into the molecular evolution of hibernation.

Mitochondrial DNA A DNA Mapp Seq Anal

September 2025

Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.

Hibernation is an elaborate response strategy employed by numerous mammals to survive in cold conditions that involves active suppression of metabolism. Despite the role of mitochondria as energy metabolism centers during hibernation, the adaptive and evolutionary mechanisms of mitochondrial genes in hibernating animals, like hedgehogs in eulipotyphlan species, are not yet fully understood. In this study, we sequenced and assembled mitochondrial genomes of the hibernating four-toed hedgehog () and the non-hibernating Asian house shrew ().

View Article and Find Full Text PDF

Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder characterized by systemic inflammation and lymphadenopathy. Two major clinical subtypes, idiopathic plasmacytic lymphadenopathy (iMCD-IPL) and iMCD with thrombocytopenia, anasarca, fever, renal dysfunction/reticulin fibrosis, and organomegaly (iMCD-TAFRO), exhibit distinct pathophysiologic mechanisms. While interleukin-6 (IL-6) is known to be elevated in iMCD, the differences in IL-6 production sources between subtypes remain unclear.

View Article and Find Full Text PDF

Macroautophagy/autophagy is an evolutionarily conserved process through which cells degrade cytoplasmic substances via autophagosomes. During the initiation of autophagosome formation, the ULK/Atg1 complex serves as a scaffold that recruits and regulates downstream ATG/Atg proteins and ATG9/Atg9-containing vesicles. Despite the essential role of the ULK/Atg1 complex, its components have changed during evolution; the ULK complex in mammals consists of ULK1 (or ULK2), RB1CC1, ATG13, and ATG101, whereas the Atg1 complex in the yeast lacks Atg101 but instead has Atg29 and Atg31 along with Atg17.

View Article and Find Full Text PDF

Timing Matters: How Daily Rhythms Affect Remote Ischemic Postconditioning Therapy for Stroke.

Stroke

September 2025

Departments of Radiology and Neurology, Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston (E.L., R.M.P., K.H., E.H.L., E.E.).

Background: Despite promising preclinical results, remote limb ischemic postconditioning efficacy in human stroke treatment remains unclear, with mixed clinical trial outcomes. A potential reason for translational difficulties could be differences in circadian rhythms between nocturnal rodent models and diurnal humans.

Methods: Male C57BL/6J mice were subjected to transient focal cerebral ischemia and then exposed to remote postconditioning during their active or inactive phase and euthanized at 24 hours and 3 days.

View Article and Find Full Text PDF