Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Jasminum sambac (jasmine flower), a world-renowned plant appreciated for its exceptional flower fragrance, is of cultural and economic importance. However, the genetic basis of its fragrance is largely unknown. Here, we present the first de novogenome assembly of J. sambac with 550.12 Mb (scaffold N50 = 40.10 Mb) assembled into 13 pseudochromosomes. Terpene synthase (TPS) genes associated with flower fragrance are considerably amplified in the form of gene clusters through tandem duplications in the genome. Gene clusters within the salicylic acid/benzoic acid/theobromine (SABATH) and benzylalcohol O-acetyltransferase/anthocyanin O-hydroxycinnamoyltransferases/anthranilate N-hydroxycinnamoyl/benzoyltransferase/deacetylvindoline 4-O-acetyltransferase (BAHD) superfamilies were identified to be related to the biosynthesis of phenylpropanoid/benzenoid compounds. Several key genes involved in jasmonate biosynthesis were duplicated, causing an increase in copy numbers. In addition, multi-omics analyses identified various aromatic compounds and many genes involved in fragrance biosynthesis pathways. Furthermore, the roles of JsTPS3 in β-ocimene biosynthesis, as well as JsAOC1 and JsAOS in jasmonic acid biosynthesis, were functionally validated. The genome assembled in this study for J. sambac offers a basic genetic resource for studying floral scent and jasmonate biosynthesis, and provides a foundation for functional genomic research and variety improvements in Jasminum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372924 | PMC |
http://dx.doi.org/10.1016/j.gpb.2022.12.005 | DOI Listing |