98%
921
2 minutes
20
We present direct-LIVE-PAINT, an easy-to-implement approach for the nanoscopic imaging of protein structures in live cells using labeled binding peptides. We demonstrate the feasibility of direct-LIVE-PAINT with an actin-binding peptide fused to EGFP, the location of which can be accurately determined as it transiently binds to actin filaments. We show that direct-LIVE-PAINT can be used to image actin structures below the diffraction-limit of light and have used it to observe the dynamic nature of actin in live cells. We envisage a similar approach could be applied to imaging other proteins within live mammalian cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9878614 | PMC |
http://dx.doi.org/10.1002/pro.4558 | DOI Listing |
Int J Pharm
September 2025
Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, People's Republic of China; Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, People's Republic of China. Electronic address:
Background: Ultrasound-assisted transdermal drug delivery, or sonophoresis, enhances skin permeability, offering a non-invasive alternative for drug administration. However, its clinical application remains limited because of an insufficient understanding of its underlying mechanisms and optimal parameters. This study investigates the factors influencing ultrasound-enhanced drug absorption and examines its biological effects on skin structures and HaCaT cells, providing a comprehensive analysis of its mechanisms.
View Article and Find Full Text PDFCurr Biol
September 2025
Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; Braunschweig Integrated Centre
Dynamic actin filament remodeling is crucial for a plethora of fundamental cell biological processes, ranging from cell division and migration to cell communication, intracellular trafficking, or tissue development. Cytochalasin B (CB) and D (CD) are fungal secondary metabolites frequently used for interference with such processes. Although they are generally assumed to block actin filament polymerization at their rapidly growing barbed ends and compete with regulators at these sites, precise molecular understanding of their effects in dynamic actin structures requires further study.
View Article and Find Full Text PDFJ Photochem Photobiol B
August 2025
Family Delivery Room, Women and Children's Hospital, Zhumadian Central Hospital, Zhumadian 463000, China.
Pelvic infection has emerged as a significant health risk to women, making the accurate identification of possible pathogenic bacteria and pathogens crucial for its prevention and treatment. Photodynamic therapy (PDT) for antibacterial purposes has emerged as an alternative and promising therapeutic approach for pelvic infections. In this investigation, we developed new antibacterial nanomaterials (DCMP NPs) using doxycycline (DCL), chitosan (CH), and mesoporous polydopamine (MPD) nanoparticles.
View Article and Find Full Text PDFACS Chem Biol
September 2025
Institute for Biomedicine and Glycomics, Griffith University, Queensland, 4111 Brisbane, Australia.
Small-molecule metabolic chemical probes are tailored chemical biology tools that are designed to detect and visualize biological processes within a cell or an organism. Nucleoside analogues are a subset of metabolic probes that enable the study of DNA synthesis, proliferation kinetics, and cell cycle progression. However, most available nucleoside analogue probes have been designed for use in mammalian cells, limiting their use in other species, where there are metabolic pathway differences.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel.
Chemiluminescence offers distinct advantages for bioimaging and sensing, notably by eliminating the need for external light excitation and minimizing background interference. While the original phenoxy-1,2-dioxetanes have served as the cornerstone of chemiluminescent probe design, their efficiency is significantly compromised in aqueous environments. In this study, we report the development and evaluation of phenylamine-substituted 1,2-dioxetanes as a new class of luminophores with markedly enhanced performance under physiological conditions.
View Article and Find Full Text PDF