Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite long-term research achievements, the development of cell therapy (CT) products remains challenging. This is because the risks experienced by the subject and therapeutic effects in the clinical trial stage are unclear due to the various uncertainties of CT when administered to humans. Nevertheless, as autologous cell products for systemic administration have recently been approved for marketing, CT product development is accelerating, particularly in the field of unmet medical needs. The human experience of CT remains insufficient compared with other classes of pharmaceuticals, while there are countless products for clinical development. Therefore, for many sponsors, understanding the rationale of human application of an investigational product based on the consensus and improving the ability to apply it appropriately for CT are necessary. Thus, defining the level of evidence for safety and efficacy fundamentally required for initiating the clinical development and preparing it using a reliable method for CT. Furthermore, the expertise should be strengthened in the design of the first-in-human trial, such as the starting dose and dose-escalation plan, based on a sufficiently acceptable rationale. Cultivating development professionals with these skills will increase the opportunity for more candidates to enter the clinical development phase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9978837PMC
http://dx.doi.org/10.15283/ijsc21189DOI Listing

Publication Analysis

Top Keywords

clinical development
16
development cell
8
cell therapy
8
therapy products
8
development
7
clinical
5
establishing rationale
4
rationale clinical
4
products
4
products consensus
4

Similar Publications

Background: Chest radiography is often performed preoperatively as a common diagnostic tool. However, chest radiography carries the risk of radiation exposure. Given the uncertainty surrounding the utility of preoperative chest radiographs, physicians require systematically developed recommendations.

View Article and Find Full Text PDF

Self-Propelled Magnetic Micromotor-Functionalized DNA Tile System for Autonomous Capture of Circulating Tumor Cells in Clinical Diagnostics.

Adv Sci (Weinh)

September 2025

Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.

Circulating tumor cells (CTCs) carry intact tumor molecular information, making them invaluable for personalized cancer monitoring. However, conventional capture methods, relying on passive diffusion, suffer from low efficiency due to insufficient collision frequency, severely limiting clinical utility. Herein, a magnetic micromotor-functionalized DNA-array hunter (MMDA hunter) is developed by integrating enzyme-propelled micromotors, magnetic nanoparticles, and nucleic acid aptamers into distinct functional partitions of a DNA tile self-assembly structure.

View Article and Find Full Text PDF

Background: Omeprazole, a widely used proton pump inhibitor, has been associated with rare but serious adverse events such as myopathy. Previous research suggests that concurrent use of omeprazole with fluconazole, a potent cytochrome P450 (CYP) 2C19/3A4 inhibitor, may increase the risk of myopathy. However, the contribution of genetic polymorphisms in CYP enzymes remains unclear.

View Article and Find Full Text PDF

Purpose: The fourth phase of the Electronic Medical Records and Genome Network (eMERGE4) is testing the return of 10 polygenic risk scores (PRS) across multiple clinics. Understanding the perspectives of health-system leaders and frontline clinicians can inform plans for implementation of PRS.

Methods: Fifteen health-system leaders and 20 primary care providers (PCPs) took part in semi-structured interviews.

View Article and Find Full Text PDF