98%
921
2 minutes
20
Background/aim: Cancer cells with high anchorage independence can survive and proliferate in the absence of adhesion to the extracellular matrix. Under anchorage-independent conditions, cancer cells adhere to each other and form aggregates to overcome various stresses. In this study, we investigated the cytomorphology and gene expression signatures of oral cancer cell aggregates.
Materials And Methods: Two oral cancer-derived cell lines, SAS and HSC-3 cells, were cultured in a low-attachment plate and their cytomorphologies were observed. The transcriptome between attached and detached SAS cells was examined using gene expression microarrays. Subsequently, gene enrichment analysis and Ingenuity Pathway Analysis were performed. Gene expression changes under attached, detached, and re-attached conditions were measured via RT-qPCR.
Results: While SAS cells formed multiple round-shaped aggregates, HSC-3 cells, which had lower anchorage independence, did not form aggregates efficiently. Each SAS cell in the aggregate was linked by desmosomes and tight junctions. Comparative transcriptomic analysis revealed 1,698 differentially expressed genes (DEGs) between attached and detached SAS cells. The DEGs were associated with various functions and processes, including cell adhesion. Moreover, under the detached condition, the expression of some epithelial genes (DSC3, DSP, CLDN1 and OCLN) were up-regulated. The changes in both cytomorphology and epithelial gene expression under the detached condition overall returned to their original ones when cells re-attached.
Conclusion: The results suggest specific cytomorphological and gene expression changes in oral cancer cell aggregates. Our findings provide insights into the mechanisms underlying anchorage-independent oral cancer cell aggregation and reveal previously unknown potential diagnostic and therapeutic molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806669 | PMC |
http://dx.doi.org/10.21873/cgp.20365 | DOI Listing |
Crit Rev Food Sci Nutr
September 2025
Hunan Key Laboratory of Deep Processing and Quality Control of Cereals and Oils, State Key Laboratory of Utilization of Woody Oil Resource, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition that results from metabolic disorders. In addition to genetic factors, irregular and high-energy diets may also significantly contribute to its pathogenesis. Dietary habits can profoundly alter the composition of gut microbiota and metabolites.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
September 2025
College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
Selenium is an essential trace element in many organisms but becomes toxic at elevated concentrations. At moderately increased, non-lethal levels, selenite triggers both selenium utilization and stress responses in microorganisms. However, the thresholds of such responses in archaea remain poorly understood.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
September 2025
Department of Biochemistry University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Glycocins are a growing family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are O- and/or S-glycosylated. Using a sequence similarity network of putative glycosyltransferases, the thg biosynthetic gene cluster was identified in the genome of Thermoanaerobacterium thermosaccharolyticum. Heterologous expression in Escherichia coli showed that the glycosyltransferase (ThgS) encoded in the biosynthetic gene cluster (BGC) adds N-acetyl-glucosamine (GlcNAc) to Ser and Cys residues of ThgA.
View Article and Find Full Text PDFJ Anim Sci
September 2025
Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
It is helpful for diagnostic purposes to improve our current knowledge of gut development and serum biochemistry in young piglets. This study investigated serum biochemistry, and gut site-specific patterns of short-chain fatty acids (SCFA) and expression of genes related to barrier function, innate immune response, antioxidative status and sensing of fatty and bile acids in suckling and newly weaned piglets. The experiment consisted of two replicate batches with 10 litters each.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Department of Biology, College of Education for Pure Sciences, University of Kerbala, Kerbala, Iraq.
Gastric cancer is one of the causes of deaths related to cancer across the globe and both genetic and environmental factors are the most prominent. Causes of its pathogenesis. This paper researches the expression of the C-FOS gene.
View Article and Find Full Text PDF