Sialylated IVIg binding to DC-SIGN Hofbauer cells induces immune tolerance through the caveolin-1/NF-kB pathway and IL-10 secretion.

Clin Immunol

Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University; 120 Neungdong-r

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although the use of IVIg has increased in various immune-driven diseases and even in pregnancy, the exact action mechanisms of IVIg are not fully understood. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) is a known receptor for α-2,6-sialylated IgG (sIVIg), which is responsible for the anti-inflammatory effect of IVIg. DC-SIGN is expressed on Hofbauer cells (HBCs) of the fetal villi of the placenta which act as an innate immune modulator at the maternal-fetal interface. Preeclampsia is a major complication in pregnancy and is related to IL-10, a cytokine with an important role in immune tolerance. DC-SIGN interaction with sIVIg in HBCs promoted IL-10 secretion through the activation of the caveolin-1/NF-κB pathway, especially in plasma lipid rafts. Consistent results were obtained for HBCs from patients with preeclampsia. Collectively, the stimulation of DC-SIGN HBCs with sIVIg enhanced immune tolerance in the feto-maternal environment, suggesting the therapeutic application of sIVIg to prevent preeclampsia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clim.2022.109215DOI Listing

Publication Analysis

Top Keywords

immune tolerance
12
hofbauer cells
8
il-10 secretion
8
dc-sign
5
sialylated ivig
4
ivig binding
4
binding dc-sign
4
dc-sign hofbauer
4
cells induces
4
immune
4

Similar Publications

Host-pathogen interactions involve two critical strategies: resistance, whereby hosts clear invading microbes, and tolerance, whereby hosts carry high pathogen burden asymptomatically. Here, we investigate mechanisms by which Salmonella-superspreader (SSP) hosts maintain an asymptomatic state during chronic infection. We found that regulatory T cells (Tregs) are essential for this disease-tolerant state, limiting intestinal immunopathology and enabling SSP hosts to thrive, while facilitating Salmonella transmission.

View Article and Find Full Text PDF

Immunomodulation: precision targeting for restoring immune homeostasis and therapeutic applications.

Essays Biochem

September 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.

The intricate regulation of the immune system, maintaining equilibrium between pathogen defense and self-tolerance, is fundamental to health. Disruptions in this delicate balance underlie a vast spectrum of human diseases, extending beyond oncology to encompass autoimmune disorders, chronic inflammatory conditions, infectious diseases, allergies, and hypertension. While traditional therapies often rely on broad immunosuppression or direct pathogen eradication, the rapidly evolving field of immunomodulation offers a nuanced alternative: precisely calibrating immune responses to restore homeostasis or achieve targeted defense.

View Article and Find Full Text PDF

Recombinant spider silk functionalized with a CD40 agonist shows improved capability to activate human B cells in vitro - A novel module for cancer immunotherapy.

Int J Biol Macromol

September 2025

Department of Protein Science, Division of Protein Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden. Electronic address:

This paper presents the generation and evaluation of a novel potential drug delivery platform for biologics, based on recombinant spider silk. Targeting CD40 for activation of antigen presenting cells, in order to overcome tumor induced T cell tolerance, have shown promising results in cell and animal models. However, further trials have gained limited results due to severe side reactions.

View Article and Find Full Text PDF

Integration of multi-omics resources reveals genetic features associated with environmental adaptation in the Wuzhishan pig genome.

J Therm Biol

September 2025

Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:

In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.

View Article and Find Full Text PDF

It is helpful for diagnostic purposes to improve our current knowledge of gut development and serum biochemistry in young piglets. This study investigated serum biochemistry, and gut site-specific patterns of short-chain fatty acids (SCFA) and expression of genes related to barrier function, innate immune response, antioxidative status and sensing of fatty and bile acids in suckling and newly weaned piglets. The experiment consisted of two replicate batches with 10 litters each.

View Article and Find Full Text PDF