Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Genome-wide association studies have reported 23 gene loci related to abdominal aortic aneurysm (AAA)-a potentially lethal condition characterized by a weakened dilated vessel wall. This study aimed to identify proteomic signatures and pathways related to these risk loci to better characterize AAA genetic susceptibility.

Methods: Plasma concentrations of 4870 proteins were determined using a DNA aptamer-based array. Linear regression analysis estimated the associations between the 23 risk alleles and plasma protein levels with adjustments for potential confounders in a race-stratified analysis of 1671 Black and 7241 White participants. Significant proteins were then evaluated for their prediction of clinical AAA (454 AAA events in 11 064 individuals), and those significantly associated with AAA were further interrogated using Mendelian randomization analysis.

Results: Risk variants proximal to , , , , , and were associated with 118 plasma proteins in Whites and 59 were replicated in Black participants. Novel associations with clinical AAA incidence were observed for kit ligand (HR, 0.59 [95% CI, 0.42-0.82] for top versus first quintiles) and neogenin (HR, 0.64 [95% CI, 0.46-0.88]) over a median 21.2-year follow-up; neogenin was also associated with ultrasound-detected asymptomatic AAA (N=4295; 57 asymptomatic AAA cases). Mendelian randomization inverse variance weighted estimates suggested that AAA risk is promoted by lower levels of kit ligand (OR per SD=0.67; =1.4×10) and neogenin (OR per SD=0.50; =0.03).

Conclusions: Low levels of neogenin and kit ligand may be novel risk factors for AAA development in potentially causal pathways. These findings provide insights and potential targets to reduce AAA susceptibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995137PMC
http://dx.doi.org/10.1161/ATVBAHA.122.317984DOI Listing

Publication Analysis

Top Keywords

kit ligand
16
aaa
10
abdominal aortic
8
aortic aneurysm
8
neogenin kit
8
clinical aaa
8
mendelian randomization
8
asymptomatic aaa
8
neogenin
5
risk
5

Similar Publications

To compare the efficacy of using bone marrow mesenchymal stem cell (BM-MSC) exosomes and injectable platelet rich fibrin (i-PRF) on the submandibular salivary glands (SMGs) of aged albino rats in restoring salivary gland structure and function. A total of 40 healthy male albino rats were used, two for obtaining the BM-MSCs, 10 for i-PRF preparation and seven adult rats (6-8 months old) represented the control group (Group 1). The remaining 21 rats were aged (18-20 months old) and divided into three groups of seven rats each; (Group 2): received no treatment, (Group 3): each rat received a single intraglandular injection of BM-MSC exosomes (50 μg/kg/dose suspended in 0.

View Article and Find Full Text PDF

Dual Role of DLK1 in GnRH Neuron Ontogeny.

Stem Cell Rev Rep

September 2025

Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.

Mutations in Delta Like Non-Canonical Notch Ligand 1 (DLK1), a paternally expressed imprinted gene, underlie central precocious puberty (CPP), yet the mechanism remains unclear. To test the hypothesis that DLK1 plays a role in gonadotropin releasing hormone (GnRH) neuron ontogeny, 75 base pairs were deleted in both alleles of DLK1 exon 3 with CRISPR-Cas9 in human pluripotent stem cells (hPSCs). This line, exhibiting More than 80% loss of DLK1 protein, was differentiated into GnRH neurons by dual SMAD inhibition (dSMADi), FGF8 treatment and Notch inhibition, as previously described, however, it did not exhibit accelerated GNRH1 expression.

View Article and Find Full Text PDF

Red Blood Cell-Mediated Enhancement of Hematopoietic Stem Cell Functions via a Hes1-Dependent Pathway.

FASEB J

September 2025

Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, The University of Osaka, Osaka, Japan.

In bone marrow, cell numbers are balanced between production and loss. After chemotherapy, blood cell counts decrease initially but later recover as hematopoietic progenitor cells expand, although the mechanisms underlying this recovery are still unclear. We investigated the influence of red blood cells (RBCs) on hematopoietic stem cell (HSC) function during bone marrow recovery.

View Article and Find Full Text PDF

Cardiovascular diseases are increasingly recognized as chronic disorders driven by a complex interplay between inflammation and fibrosis. In this review, we elucidate emerging mechanisms that govern the transition from acute inflammation to pathological fibrosis, with particular focus on cellular crosstalk between neutrophils, macrophages, fibroblasts, and myofibroblasts. We explore how dysregulated immune responses and extracellular matrix (ECM) remodeling sustain a pathogenic feedback loop, promoting myocardial stiffening and adverse cardiac remodeling.

View Article and Find Full Text PDF

Background: Polymerase chain reaction (PCR)-based Minimal residual disease (MRD) detection is commonly used for core-binding factor acute myeloid leukemia (CBF-AML), but its interpretation in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains under discussion.

Method: Using Kyoto Stem Cell Transplantation Group registry data, we included 96 patients who underwent allo-HSCT between 2000 and 2019 for CBF-AML.

Results: To assess MRD, quantitative PCR with GAPDH control was most used.

View Article and Find Full Text PDF