98%
921
2 minutes
20
Motor control, a ubiquitous part of driving, requires increased cognitive controlled processing in older adults relative to younger adults. However, the influence of aging on motor-related neural mechanisms in the context of driving has rarely been studied. The present study aimed to identify age-related changes in cognitive control and attention allocation during a simulated steering task, using electroencephalography. Midfrontal theta, a marker for cognitive control, and posterior alpha power, a marker for attention allocation, were measured in a total of 26 young, 25 middle-aged, and 28 older adults. By adapting driving speed, the difficulty level of this steering task was individualized for each participant. Results show age-related changes in midfrontal theta power, but not in posterior alpha power, despite similar steering accuracy across age groups. Specifically, only younger and, to a lesser extent, middle-aged adults exhibited increased theta power while driving through more demanding curved segments relative to straight segments. In contrast, theta power upregulation was absent in older adults, suggesting a saturation of cognitive resources while driving, possibly due to a limitation in resource capacity, or less automatic motor-related neural processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurobiolaging.2022.11.014 | DOI Listing |
PLoS One
September 2025
MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, United Kingdom.
Background: Many young people fail to achieve the minimum recommended amount of physical activity to benefit their health. Understanding the nature of age-related changes in behaviour and how this varies for population sub-groups is informative for intervention design. The aim of this study was to describe age-related changes in physical activity and sedentary time and examine variability in patterns of change across demographic sub-groups.
View Article and Find Full Text PDFRetin Cases Brief Rep
October 2024
Eye Clinic, Humanitas-Gradenigo Hospital, Torino, Italy.
Purpose: To study the efficacy and safety of pro re nata regimen of brolucizumab, without loading dose, in treatment-naive patients with neovascular age-related macular degeneration (nAMD).
Case Series: Retrospective, observational study. We included all consecutive patients diagnosed with treatment- naïve nAMD undergoing Brolucizumab in Humanitas eye clinic, Turin, Italy between April 2022 and May 2023.
Eur J Case Rep Intern Med
August 2025
National Rehab Hospital, Dublin, Ireland.
Unlabelled: This report provides a detailed analysis of a singular case involving cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) in a male patient who suffered a stroke. Our investigation delves into the clinical manifestations, genetic foundations, diagnostic complexities, and prognosis associated with CADASIL. As a notable contributor to stroke occurrence in young patients, CADASIL's impact on morbidity and mortality is influenced by stroke-related complications and cognitive decline.
View Article and Find Full Text PDFFront Genet
August 2025
Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States.
Introduction: Aging is accompanied by systemic metabolic changes that contribute to disease susceptibility and functional decline. Sex differences in aging have been reported in humans, yet their mechanistic basis remains poorly understood. Due to their physiological similarity to humans, rhesus macaques are a powerful translational model to investigate sex-specific metabolomic aging under controlled conditions.
View Article and Find Full Text PDFClin Interv Aging
September 2025
Department for Orthopedics, Traumatology and Plastic Surgery, University Hospital, Leipzig, Germany.
Study Design: Systematic review.
Purpose: As the number of elderly increases, age-related changes of body composition like osteoporosis and sarcopenic muscle changes contribute to higher morbidity, less quality of life and higher health care costs. Data on the effect of muscle atrophy on osteoporotic vertebral fractures is limited.