Earthworms regulate plants' effects on soil microbial nutrient limitations: Examinations with contrasting soils and moisture.

J Environ Manage

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China; CAS Center for Excellence in Quaternary Sc

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soil microbial nutrient limitations significantly affect microbial processes and thus ecosystem functionality, whereas the response of soil microbial nutrient limitations to earthworms has rarely been addressed but is urgently needed due to the important role of earthworms in terrestrial ecosystems. By examining how earthworms regulate plants' effects on microbial nutrient limitations under contrasting soil types and moisture conditions, we showed that plant presence reduced microbial carbon (C) limitation and such reduction was enhanced by earthworm. Plant presence increased soil microbial phosphorus (P) limitation in soils with earthworms in most cases. Additionally, the effects of plants on microbial nutrient limitations and their responses to earthworms were dependent on soil type (or soil nutrients) and moisture. These results suggested that earthworms have the potential to reduce soil microbial C limitation but enhance P limitation and highlighted the importance of nutrients and moisture in influencing the effects of earthworms and plants on microbial nutrient limitations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.117061DOI Listing

Publication Analysis

Top Keywords

microbial nutrient
24
nutrient limitations
24
soil microbial
20
microbial
10
earthworms
8
earthworms regulate
8
regulate plants'
8
plants' effects
8
soil
8
plant presence
8

Similar Publications

The aim of the study was to reduce the chemical fertilizers with microbial inoculant-rich vermicompost, which enhanced the growth, flowering, and soil health of the tuberose crop. A total of six treatments were applied with reducing doses of synthetic fertilizers under a factorial randomized design and replicated thrice. In this study, vermicompost (VC) made from cow dung and vegetable waste utilizing Eisenia foetida and their mixed biomass were enriched with microbial inoculants and assessed for their impact on microbial and enzymatic populations including urease, acid phosphatase activity and dehydrogenase activity in soil, nutrient availability, and tuberose development and flowering.

View Article and Find Full Text PDF

Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.

View Article and Find Full Text PDF

Large-scale geological processes shape microbial habitats and drive the evolution of life on Earth. During the Oligocene, convergence between Africa and Europe led to the opening of the Western Mediterranean Basin, a deep-ocean system characterized by fluid venting, oxygen depletion, and the absence of benthic fauna. In this extreme, inhospitable seafloor environment, fusiform objects known as Tubotomaculum formed, whose origin has long remained controversial.

View Article and Find Full Text PDF

Survey of a grapevine microbiome through functional metagenomics.

Food Res Int

November 2025

Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy; Interdepartmental Centre for Grapevines and Wine Sciences, University of Turin, Corso Enotria 2/C, 12051 Alba, Italy. Electronic address:

Microorganisms colonizing grapevines possess diverse functional capabilities that influence the health, growth, productivity and, consequently, wine quality. In this study, spatial and temporal dynamics of the microbiome of Vitis vinifera cv. Barbera grapevine were determined by shotgun sequencing.

View Article and Find Full Text PDF

Background: Dry-fermented soybean meal (DFSBM) and wet-fermented soybean meal (WFSBM) were evaluated as alternatives to conventional soybean meal in piglet diets, focusing on growth performance, antioxidant function and fecal microbiome modulation. A total of 225 male piglets (Duroc × (Landrace × Yorkshire)) aged 40 days with a body weight of 13.01 ± 0.

View Article and Find Full Text PDF