Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Efficient depolymerization of crystalline cellulose requires cooperation between multiple cellulolytic enzymes. Through biochemical approaches, molecular dynamics (MD) simulation, and single-molecule observations using high-speed atomic force microscopy (HS-AFM), we quantify and track synergistic activity for cellobiohydrolases (CBHs) with a lytic polysaccharide monooxygenase (LPMO) from . Increasing concentrations of LPMO (AA9D) increased the activity of a glycoside hydrolase family 6 CBH, Cel6A, whereas the activity of a family 7 CBH (Cel7D) was enhanced only at lower concentrations of AA9D. MD simulation suggests that the result of AA9D action to produce chain breaks in crystalline cellulose can oxidatively disturb the crystalline surface by disrupting hydrogen bonds. HS-AFM observations showed that AA9D increased the number of Cel7D molecules moving on the substrate surface and increased the processivity of Cel7D, thereby increasing the depolymerization performance, suggesting that AA9D not only generates chain ends but also amorphizes the crystalline surface, thereby increasing the activity of CBHs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788756PMC
http://dx.doi.org/10.1126/sciadv.ade5155DOI Listing

Publication Analysis

Top Keywords

lytic polysaccharide
8
polysaccharide monooxygenase
8
crystalline cellulose
8
aa9d increased
8
family cbh
8
crystalline surface
8
activity
5
aa9d
5
monooxygenase increases
4
increases cellobiohydrolases
4

Similar Publications

Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.

View Article and Find Full Text PDF

Unlabelled: Microbial deconstruction of plant polysaccharides is important for environmental nutrient cycling, and bacteria proficient at this process have extensive suites of polysaccharide-specific enzymes. In the gram-negative saprophyte , genome annotation suggests that 17 genes are predicted to encode Carbohydrate-Active enZymes (CAZymes) with roles in cellulose degradation; however, previous work suggested that only a subset of these genes is essential. Building upon that work, here, we identify the required and minimally sufficient set of enzymes for complete degradation of cellulose using a combination of transcriptomics, gene deletion analysis, heterologous expression studies, and metabolite analysis.

View Article and Find Full Text PDF

Lytic polysaccharide monooxygenases (LPMOs) represent copper-dependent enzymes pivotal in breaking down resilient polysaccharides like cellulose and chitin by means of oxidation, creating more accessible sites for glycoside hydrolases. To elevate the conversion efficiency of chitin, an AA10 LPMO was identified from the genome of 2-40 and heterologously expressed. The optimal pH for the activity of recombinant LPMO10A is 9.

View Article and Find Full Text PDF

The first physical barrier pathogenic microbes need to overcome for host colonization is the cuticle, epidermis, or skin of an animal. The nematode-trapping fungus Arthrobotrys flagrans is able to catch and digest nematodes like Caenorhabditis elegans by overcoming this physical barrier of the nematode and colonize the entire body. Here we characterized TrsA (trap-specific protein), a virulence factor of A.

View Article and Find Full Text PDF

Recent Advances in Bioinspired Cu-Directed C-H Hydroxylation Reactions.

Acc Chem Res

August 2025

Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

ConspectusCu-dependent metalloenzymes catalyze a wide array of oxidative transformations using O as an oxidant under mild conditions. These include the hydroxylation of challenging organic substrates (e.g.

View Article and Find Full Text PDF