Concrete Performance Produced Using Recycled Construction and By-Product Industrial Waste Coarse Aggregates.

Materials (Basel)

Chair of Research and Studies in Strengthening and Rehabilitation of Structures, Department of Civil Engineering, King Saud University, Riyadh 11421, Saudi Arabia.

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Concrete is classified as a multi-composite material comprising three phases: coarse aggregate, mortar, and interfacial transition zone (ITZ). Fine and coarse aggregates occupy approximately 70-85% by volume, of which coarse aggregate typically constitutes more than two-thirds of the total quantity of aggregate by volume. The current study investigates the concrete performance produced using various recycled construction and by-product industrial waste coarse aggregates. Six types of coarse aggregates: manufactured limestone, quartzite, natural scoria, by-product industrial waste aggregate, and two sources of recycled concrete aggregates with densities ranging from 860 to 2300 kg/m and with different strength properties were studied. To determine the coarse aggregate contribution to the overall concrete performance, lean and rich concrete mixtures (Mix 1 and Mix 2) were used. Mix 1 (lean mixture) consisted of a ratio of water to cement (w/c) of 0.5 and cement content of 300 kg/m, whereas a higher quantity of cement of 500 kg/m and a lower w/c ratio of 0.3 were used for Mix 2 (rich mixture). The results showed that while the compressive strength for different aggregate types in Mix 1 was comparable, the contribution of aggregate to concrete performance was very significant for Mix 2. Heavyweight aggregate produced the highest strength, while the lightweight and recycled aggregates resulted in lower mechanical properties compared to normal weight aggregates. The modulus of elasticity was also substantially affected by the coarse aggregate characteristics and even for Mix 1. The ACI 363R-92 and CSA A23.3-04 appeared to have the best model for predicting the modulus of elasticity, followed by the ACI-318-19 (density-based formula) and AS-3600-09. The density of coarse aggregate, and hence concrete, greatly influenced the mechanical properties of concrete. The water absorption percentage for the concrete produced from various types of aggregates was found to be higher for the aggregates of higher absorption capacity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781416PMC
http://dx.doi.org/10.3390/ma15248985DOI Listing

Publication Analysis

Top Keywords

coarse aggregate
20
concrete performance
16
coarse aggregates
16
by-product industrial
12
industrial waste
12
concrete
10
aggregate
10
coarse
9
aggregates
9
performance produced
8

Similar Publications

Soil aggregate-specific heterogeneity in humic acid governs cadmium and lead fractionation and bioavailability.

J Hazard Mater

September 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

While humic acids (HAs) are known to modulate heavy metal behavior, their profound heterogeneity across soil aggregate fractions remains overlooked. Crucially, whether HA origin within distinct soil aggregates differentially governs heavy metal speciation and bioavailability is unknown-creating a critical knowledge gap for targeted soil remediation. This study deciphers, for the first time, how aggregate-specific HAs control cadmium (Cd) and lead (Pb) dynamics.

View Article and Find Full Text PDF

Dynamic Coupling and Disorder in Aggregation of Light-Harvesting Complex II in Plant Thylakoid Membranes.

J Phys Chem B

September 2025

Department of Chemistry, IIT Jodhpur, Jodhpur, Rajasthan 342037, India.

The dynamics of the aggregated light-harvesting complex (LHCII) associated with its antenna pigments can be crucial for a transition between light-harvesting and dissipative states, which is pivotal for nonphotochemical quenching (NPQ). To this end, aggregation of pigment-binding LHCII monomers and PsbS-associated trimers in neutral and low lumenal pH respectively, has been investigated when embedded in the plant thylakoid membranes, using coarse-grained molecular dynamics simulations. Both pigment-binding LHCII monomers and PsbS-associated trimers dynamically form and break dimers and higher-order aggregates in thylakoids within the simulation time.

View Article and Find Full Text PDF

Computed Tomography (CT) to Cone-Beam Computed Tomography (CBCT) image registration is crucial for image-guided radiotherapy and surgical procedures. However, achieving accurate CT-CBCT registration remains challenging due to various factors such as inconsistent intensities, low contrast resolution and imaging artifacts. In this study, we propose a Context-Aware Semantics-driven Hierarchical Network (referred to as CASHNet), which hierarchically integrates context-aware semantics-encoded features into a coarse-to-fine registration scheme, to explicitly enhance semantic structural perception during progressive alignment.

View Article and Find Full Text PDF

Molecular Insights into the Reversible Mechanisms of CO-Switchable Surfactant Solubilization and Emulsification.

Langmuir

September 2025

Polymer Research Institute, State Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.

Switchable surfactants exhibit broad application potential due to their reversible response to external stimuli. The reversible mechanism of the CO-switchable surfactant ('-dodecyl-, -dimethyl-acetamidines, DDA) solubilization polycyclic aromatic hydrocarbons (PAHs) and the microscopic dynamic behavior of emulsification/demulsification were systematically studied using coarse-grained molecular dynamics simulations. The dynamic transition processes of protonation (DDA to DDA) and deprotonation (DDA to DDA) were successfully simulated.

View Article and Find Full Text PDF

Recycling crushed clay bricks as both coarse and fine aggregates has shown promising potential for producing eco-friendly concrete, helping to reduce the industry's environmental footprint while promoting the sustainable reuse of waste materials. However, the inherent variability of these aggregates can lead to inconsistent concrete performance, emphasizing the need for a thorough investigation to assess their suitability for construction applications. For this purpose, a number of concrete mixtures incorporating crushed clay bricks as coarse and/or fine aggregates were produced and tested in this study.

View Article and Find Full Text PDF