98%
921
2 minutes
20
In recent years, Wearable Devices have been used in a wide variety of applications and fields, but because they span so many different disciplines, it is difficult to ascertain the intellectual structure of this entire research domain. No review encompasses the whole research domain related to Wearable Devices. In this study, we collected articles on wearable devices from 2001 to 2022 and quantitatively organized them by bibliometric analysis to clarify the intellectual structure of this research domain as a whole. The cluster analysis, co-occurrence analysis, and network centrality analysis were conducted on articles collected from the Web of Science. As a result, we identified one cluster that represents applied research and two clusters that represent basic research in this research domain. Furthermore, focusing on the top two countries contributing to this research domain, China and the USA., it was confirmed that China is extremely inclined toward basic research and the USA. toward applied research, indicating that applied and basic research are in balance. The basic intellectual structure of this cross-sectional research domain was identified. The results summarize the current state of research related to Wearable Devices and provide insight into trends.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778864 | PMC |
http://dx.doi.org/10.3390/ijerph192416427 | DOI Listing |
Adv Mater
September 2025
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland.
AlN is a core material widely used as a substrate and heat sink in various electronic and optoelectronic devices. Introducing luminescent properties into intrinsic AIN opens new opportunities for next-generation intelligent sensors, self-powered displays, and wearable electronics. In this study, the first evidence is presented of AlN crystals exhibiting satisfactory mechanoluminescence (ML), photoluminescence (PL), and afterglow performance, demonstrating their potential as novel multifunctional optical sensors.
View Article and Find Full Text PDFNat Rev Endocrinol
September 2025
Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital (USZ) and University of Zurich (UZH), Zurich, Switzerland.
Wearable technologies that analyse non-conventional biological matrices, such as interstitial fluid, sweat, tears or breath, have the potential to provide longitudinal biomarker data with minimal invasiveness. These data could provide insights into physiological and behavioural patterns, in particular outside medical care facilities. Despite the success of continuous glucose monitoring, the adoption of wearable sensors for managing endocrine and metabolic diseases remains limited.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2025
Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada. Electronic address:
Monitoring skeletal muscle contraction provides valuable information about the muscle mechanical properties, which can be helpful in various biomedical applications. This chapter presents a single-element flexible and wearable ultrasonic sensor (WUS) developed by our research group and its application for continuously monitoring and characterizing skeletal muscle contraction. The WUS is made from a 110-µm thick polyvinylidene fluoride piezoelectric polymer film.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2025
Manta Pharma LLC, Gaithersburg, MD, United States. Electronic address:
Biosensing technologies, including wearables, ingestibles, and implantables, are transforming modern healthcare by enabling real-time monitoring and precise personalized treatment. As these technologies advance, ensuring their safety, efficacy, and ethical deployment remains paramount. This chapter explores the regulatory framework that governs biosensing devices in the United States, detailing premarket approval pathways, postmarket surveillance, and emerging regulatory incentives that balance innovation with patient protection.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2025
Department of Information Sciences and Technology, School of Computing, George Mason University, Fairfax, VA, United States.
Wearable technology has a promising potential to transform users' lives by continuously collecting data and providing convenient services on demand. Yet, there is also a large potential to breach users' privacy compromising the confidentiality of sensitive data. The lack of privacy regulations is caused by a limited understanding of how to control data collection, access and sharing.
View Article and Find Full Text PDF