A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effect of Maltodextrin on the Physicochemical Properties and Cooking Performance of Sweet Potato Starch Noodles. | LitMetric

Effect of Maltodextrin on the Physicochemical Properties and Cooking Performance of Sweet Potato Starch Noodles.

Foods

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Maltodextrin (MD), the hydrolyzed starch product, is a promising alternative ingredient to improve the quality of starch-based foods. The effects of MD on the physicochemical, microstructural, and cooking properties of sweet potato starch (SPS) noodles, as well as the mechanism of SPS-MD interactions, are discussed. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results indicated that MD at a suitable concentration can improve the ordered structure of SPS-MD gels. The cooking loss showed lower values of 1.47−2.16% at 0.5−2.0 wt% MD. For the texture properties, an increase in hardness and chewiness occurred at first with the addition of MD, followed by a decreasing trend, showing a maximum value at 2.0 wt% of MD. The pasting and thermal results verified the increased stability of the starch granules with MD < 3 wt%. Additionally, SPS formed a solid-like gel with MD, and the main interaction forces between SPS and MD were hydrogen bonding. The scanning electron microscopy results revealed that the higher concentrations of MD (>3 wt%) loosened the gel structure and markedly increased the pore size. These results help us to better understand the interaction mechanism of the SPS-MD complex and facilitate the development of SPS-based gel products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778636PMC
http://dx.doi.org/10.3390/foods11244082DOI Listing

Publication Analysis

Top Keywords

sweet potato
8
potato starch
8
mechanism sps-md
8
maltodextrin physicochemical
4
physicochemical properties
4
properties cooking
4
cooking performance
4
performance sweet
4
starch
4
starch noodles
4

Similar Publications