98%
921
2 minutes
20
Peptide-based hydrogels were shown to serve as good matrices for 3D cell culture and to be applied in the field of regenerative medicine. The study of the cell-matrix interaction is important for the understanding of cell attachment, proliferation, and migration, as well as for the improvement of the matrix. Here, we used scanning ion conductance microscopy (SICM) to study the growth of cells on self-assembled peptide-based hydrogels. The hydrogel surface topography, which changes during its formation in an aqueous solution, were studied at nanoscale resolution and compared with fluorescence lifetime imaging microscopy (FLIM). Moreover, SICM demonstrated the ability to map living cells inside the hydrogel. A zwitterionic label-free pH nanoprobe with a sensitivity > 0.01 units was applied for the investigation of pH mapping in the hydrogel to estimate the hydrogel applicability for cell growth. The SICM technique that was applied here to evaluate the cell growth on the peptide-based hydrogel can be used as a tool to study functional living cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776472 | PMC |
http://dx.doi.org/10.3390/cells11244137 | DOI Listing |
Anal Methods
September 2025
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China.
A novel magnetic nanostructured molecularly imprinted polymer probe (FeO@MIP) was developed for the continuous detection of Ti/Fe. The synthesis employed 50 nm FeO nanoparticles as the core matrix, with Ti and Fe serving as template molecules. Functional monomers α-methylacrylic acid (MAA) and acrylamide (AM) were used, along with ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent and 2,2'-azobisisobutyronitrile (AIBN) as the polymerization initiator, utilizing a microwave-assisted procedure.
View Article and Find Full Text PDFChemistry
September 2025
Department of Chemistry, Birla Institute of Technology and Science-Pilani, K K Birla Goa Campus, Zuarinagar, Goa, 403726, India.
This study investigates the unique syneresis (self-shrinking) behavior of N-Terminally Fmoc-protected amino acid, Fmoc-hPhe-OH (Fmoc-homo-L-phenylalanine, abbreviated in this work as hF)-based hydrogel, and its potential in environmental remediation applications. Fmoc-hPhe-OH (hF) forms a hydrogel in 50 mM phosphate buffer (PB) of pH 7.4.
View Article and Find Full Text PDFEnviron Geochem Health
September 2025
Department of Chemistry, Government Arts College(A), Salem, Tamil Nadu, 636007, India.
A CoO/AgMoO/CeOternary nanocomposites photocatalyst was successfully synthesized through a straightforward ethanol-assisted chemical method. Comprehensive characterization of its structural and optical properties was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. XRD analysis confirmed the presence of CoO, AgMoO and CeO in the ternary composite sample.
View Article and Find Full Text PDFNMR Biomed
October 2025
Department of Radiology, University of California, San Diego, California, USA.
Myelin and myelin water (MW) behavior is becoming increasingly relevant in their role in neurodegenerative diseases. Myelin proton fraction (MPF) and myelin water fraction (MWF) measured with short-TR adiabatic inversion-recovery (STAIR) sequences are potential biomarkers of myelin and MW, respectively, but their repeatabilities are unknown. This study aims to evaluate the repeatability of MPF and MWF measured with the STAIR ultrashort echo time (STAIR-UTE) and STAIR short echo time (STAIR-STE) sequences, respectively.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of Science and Technology of China, Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, Hefei, Anhui 230026, China.
The multiplicity of orbitals in quantum systems significantly influences the competition between Kondo screening and local spin magnetization. The identification of orbital-specific processes is essential for advancing spintronic devices, as well as for enhancing the understanding of many-body quantum phenomena, but it remains a great challenge. Here, we use a combination of scanning tunneling microscopy/spectroscopy and electron spin resonance (ESR) spectroscopy to investigate single iron phthalocyanine (FePc) molecules on MgO/Ag(100).
View Article and Find Full Text PDF