Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objectives: We examined whether pericardial adipose tissue (PAT) is predictive of prediabetes and type 2 diabetes over time.
Methods: In total, 2,570 adults without prediabetes/diabetes from the Coronary Artery Risk Development in Young Adults Study were followed up over 15 years. PAT volume was measured by computed tomography scans, and the new onset of prediabetes/diabetes was examined 5 years, 10 years, and 15 years after the PAT measurements. Multivariable Cox regression models were used to examine the association between the tertile of PAT and incident prediabetes/diabetes up to 15 years later. The predictive ability of PAT (vs. waist circumference [WC], body mass index [BMI], waist-to-height ratio [WHtR]) for prediabetes/diabetes was examined by comparing the area under the receiver operating characteristic curve (AUC).
Results: The highest tertile of PAT was associated with a 1.56 times (95% confidence interval [CI], 1.03 to 2.34) higher rate of diabetes than the lowest tertile; however, no association was found between the highest tertile of PAT and prediabetes in the fully adjusted models, including additional adjustment for BMI or WC. In the fully adjusted models, the AUCs of WC, BMI, WHtR, and PAT for predicting diabetes were not significantly different, whereas the AUC of WC for predicting prediabetes was higher than that of PAT.
Conclusions: PAT may be a significant predictor of hyperglycemia, but this association might depend on the effect of BMI or WC. Additional work is warranted to examine whether novel adiposity indicators can suggest advanced and optimal information to supplement the established diagnosis for prediabetes/diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106546 | PMC |
http://dx.doi.org/10.4178/epih.e2023001 | DOI Listing |