Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mycotoxins are natural metabolites produced by fungi that contaminate food and feed worldwide. They can pose a threat to human and animal health, mainly causing chronic effects, e.g., immunotoxic and carcinogenic. Due to climate change, an increase in European population exposure to mycotoxins is expected to occur, raising public health concerns. This urges us to assess the current human exposure to mycotoxins in Europe to allow monitoring exposure and prevent future health impacts. The mycotoxins deoxynivalenol (DON) and fumonisin B (FB) were considered as priority substances to be studied within the European Human Biomonitoring Initiative (HBM4EU) to generate knowledge on internal exposure and their potential health impacts. Several policy questions were addressed concerning hazard characterization, exposure and risk assessment. The present article presents the current advances attained under the HBM4EU, research needs and gaps. Overall, the knowledge on the European population risk from exposure to DON was improved by using new harmonised data and a newly derived reference value. In addition, mechanistic information on FB was, for the first time, organized into an adverse outcome pathway for a congenital anomaly. It is expected that this knowledge will support policy making and contribute to driving new Human Biomonitoring (HBM) studies on mycotoxin exposure in Europe.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783896PMC
http://dx.doi.org/10.3390/toxins14120826DOI Listing

Publication Analysis

Top Keywords

current advances
8
european population
8
exposure mycotoxins
8
health impacts
8
human biomonitoring
8
exposure
7
mycotoxins
5
advances gaps
4
gaps mycotoxins
4
mycotoxins biomonitoring
4

Similar Publications

Biological sex influences the life course development of blood pressure, systemic arterial hypertension, and hypertension-associated complications through neural, hormonal, renal, and epigenetic mechanisms. Sex hormones influence blood pressure regulation through interaction with several main regulatory systems, including the autonomic nervous system, the renin-angiotensin-aldosterone system, endothelin, and renal mechanisms. The modulation of vascular function by sex hormones varies over the lifespan.

View Article and Find Full Text PDF

Clinical Role of the Noninvasive Abdominal Fetal ECG in the Detection and Monitoring of Fetal Tachycardia.

Circ Arrhythm Electrophysiol

September 2025

Department of Congenital Heart Disease, Evelina London Children's Hospital, United Kingdom (S. Chivers, T.V., V.Z., S.M., G.M., W.R., E.R., D.F.A.L., T.G.D., O.I.M., G.K.S., J.M.S.).

Background: Fetal tachycardias can cause adverse fetal outcomes including ventricular dysfunction, hydrops, and fetal demise. Postnatally, ECG is the gold standard, but, in fetal practice, echocardiography is used most frequently to diagnose and monitor fetal arrhythmias. Noninvasive extraction of the fetal ECG (fECG) may provide additional information about the electrophysiological mechanism and monitoring of intermittent arrhythmias.

View Article and Find Full Text PDF

Mechanoglycobiology has emerged as a rapidly expanding interdisciplinary field that involves chemistry, biology, and engineering. Despite the great advancements in this field, in-depth investigation of mechanoglycobiology remains challenging due to the complex nature of glycans and cell glycocalyx, as well as the difficulty to mechanically target these biomolecules. To address the issues, novel methods and models have been established to facilitate the investigation of glycan-mediated mechanosensing and mechanotransduction.

View Article and Find Full Text PDF

Radical esophagectomy remains the cornerstone of curative treatment for esophageal cancer, but is frequently complicated by postoperative events, most notably anastomotic leakage. Anastomotic leakage, occurring in up to 30% of cases, is multifactorial in origin and significantly increases morbidity and mortality. This review aims to summarize current management strategies, highlight emerging therapies, and identify persistent clinical challenges related to this complication.

View Article and Find Full Text PDF

DNA nanotechnology-enabled bioanalysis of extracellular vesicles.

Nanoscale Horiz

September 2025

Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Extracellular vesicles (EVs) have emerged as valuable sources for liquid biopsy in disease diagnostics, given their protein and nucleic acid cargoes (, miRNA, mRNA, glycoRNA) can serve as critical biomarkers. DNA nanotechnology, leveraging its inherent programmability, high specificity, and powerful signal amplification capability, offers a transformative approach for the bioanalysis of EVs. This review summarizes recent advances in DNA nanotechnology-based analytical methodologies for detecting EV-associated proteins and nucleic acids.

View Article and Find Full Text PDF