Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vegetables and fruits are a crucial part of the planetary health diet, directly affecting human health and the gut microbiome. The objective of our study was to understand the variability of the fruit (apple and blueberry) microbiome in the frame of the exposome concept. The study covered two fruit-bearing woody species, apple and blueberry, two countries of origin (Austria and Finland), and two fruit production methods (naturally grown and horticultural). Microbial abundance, diversity, and community structures were significantly different for apples and blueberries and strongly influenced by the growing system (naturally grown or horticultural) and country of origin (Austria or Finland). Our results indicated that bacterial communities are more responsive towards these factors than fungal communities. We found that fruits grown in the wild and within home gardens generally carry a higher microbial diversity, while commercial horticulture homogenized the microbiome independent of the country of origin. This can be explained by horticultural management, including pesticide use and post-harvest treatments. Specific taxonomic indicators were identified for each group, i.e., for horticultural apples: Pseudomonas, Ralstonia, and Stenotrophomonas. Interestingly, Ralstonia was also found to be enriched in horticultural blueberries in comparison to such that were home and wildly grown. Our study showed that the origin of fruits can strongly influence the diversity and composition of their microbiome, which means that we are exposed to different microorganisms by eating fruits from different origins. Thus, the fruit microbiome needs to be considered an important but relatively unexplored external exposomic factor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10335955PMC
http://dx.doi.org/10.1007/s00248-022-02157-8DOI Listing

Publication Analysis

Top Keywords

fruit microbiome
8
apples blueberries
8
apple blueberry
8
origin austria
8
austria finland
8
naturally grown
8
grown horticultural
8
country origin
8
microbiome
6
origin
5

Similar Publications

Metabolic and microbial responses of Ceratitis capitata to essential oil-based nano-emulsions: Implications for pest management.

Pestic Biochem Physiol

November 2025

Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones científicas, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain. Electronic address:

Essential oils (EOs) are a promising alternative to conventional pesticides, but some challenges like high volatility, poor water solubility, and rapid degradation limit their use in Integrated Pest Management (IPM). To overcome these limitations, this study aimed to develop garlic, eucalyptus, and clove EO-based nano-emulsions (EO-NEs) in a bait treatment format through the high-pressure microfluidization technique and investigated the biological activities against Ceratitis capitata. In addition, the adverse effects of the most promising nano-emulsion were evaluated towards a non-target parasitoid Anagaspis daci.

View Article and Find Full Text PDF

Background: A plant-focused, healthy dietary pattern, such as the Mediterranean diet enriched with dietary fiber, polyphenols, and polyunsaturated fats, is well known to positively influence the gut microbiota. Conversely, a processed diet high in saturated fats and sugars negatively impacts gut diversity, potentially leading to weight gain, insulin resistance, and chronic, low-grade inflammation. Despite this understanding, the mechanisms by which the Mediterranean diet impacts the gut microbiota and its associated health benefits remain unclear.

View Article and Find Full Text PDF

Biochar amendment improves Morchella sextelata yield by enhancing soil NO-N availability and increasing the diversity while decreasing the absolute abundance of fungal community.

Microbiol Res

August 2025

Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China; The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Black morel (Morchella sextelata) is widely regarded as a post-fire mushroom because of its prolific fruiting in post-fire forest soils enriched with charcoal. Intriguingly, artificial cultivation of M. sextelata often incorporates biochar as a soil amendment to enhance yield, although the underlying physicochemical and ecological mechanisms remain unclear.

View Article and Find Full Text PDF

Omics Insights Into the Effects of Highbush Blueberry and Cranberry Crop Agroecosystems on Honey Bee Health and Physiology.

Proteomics

September 2025

Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.

Honey bees (Apis mellifera) are vital pollinators in fruit-producing agroecosystems like highbush blueberry (HBB) and cranberry (CRA). However, their health is threatened by multiple interacting stressors, including pesticides, pathogens, and nutritional changes. We tested the hypothesis that distinct agricultural ecosystems-with different combinations of agrochemical exposure, pathogen loads, and floral resources-elicit ecosystem-specific, tissue-level molecular responses in honey bees.

View Article and Find Full Text PDF

Epidemiological studies in humans have suggested that tomato consumption and the compositional ratios of Prevotella, Megamonas, and Streptococcus in the intestinal microbiota are related to intestinal permeability. In this study, we investigated the causal relationship using Caenorhabditis (C.) elegans.

View Article and Find Full Text PDF