Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Owing to the unique 4f-5d transitions and the involvement of 5d electrons, the divalent europium (Eu) ion is extensively used as a dopant ion in luminescent materials for phosphor-converted light emitting diodes (pc-LEDs) and other technological applications. Earlier reports in most of the cases have shown that the reduction of Eu to Eu requires very high temperatures and large hydrogen flux. In this study, a co-doping strategy with higher valent U ions was utilized to successfully stabilize Eu ions in the LiBO (LTB) host with both the BO and BO network in low H flux of only 8%. It is postulated that charge transfer occurs from U to Eu, resulting in the reduction of the charged state of Eu and the reaction probably proceeds the formation of paramagnetic transient [U-Eu] species in the co-doped LTB. The same is also believed to be facilitated by the enhanced formation of Li-O type vacancy clusters in co-doped samples and enhanced oxygen vacancies in a reducing atmosphere. We believe this work will pave a new pathway for stabilizing the unusual oxidation state of lanthanides and transition metal ions through co-doping with hexavalent uranium ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp04672e | DOI Listing |