Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: In this work, we applied and validated an artificial intelligence technique known as generative adversarial networks (GANs) to create large volumes of high-fidelity synthetic anteroposterior (AP) pelvis radiographs that can enable deep learning (DL)-based image analyses, while ensuring patient privacy.
Methods: AP pelvis radiographs with native hips were gathered from an institutional registry between 1998 and 2018. The data was used to train a model to create 512 × 512 pixel synthetic AP pelvis images. The network was trained on 25 million images produced through augmentation. A set of 100 random images (50/50 real/synthetic) was evaluated by 3 orthopaedic surgeons and 2 radiologists to discern real versus synthetic images. Two models (joint localization and segmentation) were trained using synthetic images and tested on real images.
Results: The final model was trained on 37,640 real radiographs (16,782 patients). In a computer assessment of image fidelity, the final model achieved an "excellent" rating. In a blinded review of paired images (1 real, 1 synthetic), orthopaedic surgeon reviewers were unable to correctly identify which image was synthetic (accuracy = 55%, Kappa = 0.11), highlighting synthetic image fidelity. The synthetic and real images showed equivalent performance when they were assessed by established DL models.
Conclusion: This work shows the ability to use a DL technique to generate a large volume of high-fidelity synthetic pelvis images not discernible from real imaging by computers or experts. These images can be used for cross-institutional sharing and model pretraining, further advancing the performance of DL models without risk to patient data safety.
Level Of Evidence: Level III.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arth.2022.12.013 | DOI Listing |