A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

dSCOPE: a software to detect sequences critical for liquid-liquid phase separation. | LitMetric

dSCOPE: a software to detect sequences critical for liquid-liquid phase separation.

Brief Bioinform

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Membrane-based cells are the fundamental structural and functional units of organisms, while evidences demonstrate that liquid-liquid phase separation (LLPS) is associated with the formation of membraneless organelles, such as P-bodies, nucleoli and stress granules. Many studies have been undertaken to explore the functions of protein phase separation (PS), but these studies lacked an effective tool to identify the sequence segments that critical for LLPS. In this study, we presented a novel software called dSCOPE (http://dscope.omicsbio.info) to predict the PS-driving regions. To develop the predictor, we curated experimentally identified sequence segments that can drive LLPS from published literature. Then sliding sequence window based physiological, biochemical, structural and coding features were integrated by random forest algorithm to perform prediction. Through rigorous evaluation, dSCOPE was demonstrated to achieve satisfactory performance. Furthermore, large-scale analysis of human proteome based on dSCOPE showed that the predicted PS-driving regions enriched various protein post-translational modifications and cancer mutations, and the proteins which contain predicted PS-driving regions enriched critical cellular signaling pathways. Taken together, dSCOPE precisely predicted the protein sequence segments critical for LLPS, with various helpful information visualized in the webserver to facilitate LLPS-related research.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbac550DOI Listing

Publication Analysis

Top Keywords

phase separation
12
sequence segments
12
ps-driving regions
12
liquid-liquid phase
8
segments critical
8
critical llps
8
predicted ps-driving
8
regions enriched
8
dscope
5
dscope software
4

Similar Publications