98%
921
2 minutes
20
In deciduous forests, spring leaf development and fall leaf senescence regulate the timing and duration of photosynthesis and transpiration. Being able to model these dates is therefore critical to accurately representing ecosystem processes in biogeochemical models. Despite this, there has been relatively little effort to improve internal phenology predictions in widely used biogeochemical models. Here, we optimized the phenology algorithms in a regionally developed biogeochemical model (PnET-CN) using phenology data from eight mid-latitude PhenoCam sites in eastern North America. We then performed a sensitivity analysis to determine how the optimization affected future predictions of carbon, water, and nitrogen cycling at Bartlett Experimental Forest, New Hampshire. Compared to the original PnET-CN phenology models, our new spring and fall models resulted in shorter season lengths and more abrupt transitions that were more representative of observations. The new phenology models affected daily estimates and interannual variability of modeled carbon exchange, but they did not have a large influence on the magnitude or long-term trends of annual totals. Under future climate projections, our new phenology models predict larger shifts in season length in the fall (1.1-3.2 days decade) compared to the spring (0.9-1.5 days decade). However, for every day the season was longer, spring had twice the effect on annual carbon and water exchange totals compared to the fall. These findings highlight the importance of accurately modeling season length for future projections of carbon and water cycling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-022-05296-4 | DOI Listing |
ACS Electrochem
September 2025
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, Gothenburg 412 96, Sweden.
Carbon fiber nanotip electrodes (CFNEs) are crucial for electrochemical recordings of neurotransmission release in confined spaces, such as synapses and intracellular measurements. However, fabricating CFNEs with small surface area to minimize noise remains challenging due to inconsistent tip size control, low reproducibility, and low fabrication success rate. Here, we present a reliable, user-friendly method with high reproducibility and success rate for precise CFNE fabrication using microscopy-guided electrochemical etching of cylindrical carbon fiber microelectrodes in a potassium hydroxide droplet.
View Article and Find Full Text PDFBeilstein J Nanotechnol
September 2025
Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Vietnam.
Effective removal of trace heavy metal ions from aqueous bodies is a pressing problem and requires significant improvement in the area of absorbent material in terms of removal efficiency and sustainability. We propose an efficient strategy to enhance the adsorption efficiency of carbon nanotubes (CNTs) by growing dendrimers on their surface. First, CNTs were pre-functionalized with maleic acid (MA) via Diels-Alder reaction in presence of a deep eutectic solvent under ultrasonication.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.
This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
October 2024
Department of Chemistry and Biochemistry, Nanoscale & Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States.
Carbon-based quantum dots (CQDs) have been around for a few decades. Low cell toxicity, good water solubility, excellent and tunable fluorescence properties, and the ability to dope and modify the surface of these CQDs make them an incredible choice for the visualization and treatment of various cancers. This perspective analyzes some recent progress on size-color correlation, modification, and cancer treatment applications of CQDs.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom.
Climate change is leading to increases in extreme weather events, notably increasing both droughts and floods, which undermine food security. Although each stress individually has been well studied, little is known about the response of cereals to successive water stresses, condition that often occurs in real-world scenarios. To address this gap, we have compared physiological responses of wheat and barley cultivars to cycles of drought and flooding.
View Article and Find Full Text PDF