Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of hybrid biofunctionalized nanomaterials has emerged as an attractive substitute for development of advanced biosensing platforms with superior synergistic properties. Herein, we report a label-free ultrasensitive electrochemical aptasensor comprising nanohybrid of graphene oxide (GO) and aptamer conjugated gold nanoparticles (GNP-A) for detection of cardiac biomarker Troponin I (TnI). The GNP-A are homogenously arranged by self-assembly on GO sheet to construct nanohybrid (GO@GNP-A) onto which the biomarker protein is analysed. TnI interactions at the aptamer biointerfaced nanohybrid surface causes electrochemical signal enhancement probed by using a redox active molecule. The consecutive increase in current signal is strongly attributed to conformational switching of aptamer and charge neutralization at the interface induced by TnI binding. The sensitivity of the nanohybrid aptasensor platform was found to be 0.001 pg/mL. The study has been further substantiated in Acute Myocardial Infarction (AMI) clinical samples for usage towards early, sensitive and efficient point-of-care detection of TnI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2022.108348DOI Listing

Publication Analysis

Top Keywords

conformational switching
8
switching aptamer
8
nanohybrid
5
aptamer
4
aptamer biointerfacing
4
biointerfacing graphene-gold
4
graphene-gold nanohybrid
4
nanohybrid ultrasensitive
4
ultrasensitive label-free
4
label-free sensing
4

Similar Publications

Herein, a novel class of azo photoswitches based on a phthalimide with an azo bond to the imide ring is presented, exhibiting reversible isomerization under a broad range of visible light irradiation from 405 to 530 nm. Structural variations with heteroaryl or aryl segments attached to the 3-phthalylazo unit exhibit distinct spectral features, such as red-shifted absorption, well-separated absorption bands, and tunable stability of the metastable isomer, ranging from seconds to days. They differ drastically in the half-life of -isomer stability, ranging from several seconds (-methylpyrrole) to days (-methylimidazole).

View Article and Find Full Text PDF

Physical and functional effects of substituting coevolved residues from Ω-loop C of yeast Iso-1-cytochrome c into human cytochrome c.

J Inorg Biochem

September 2025

Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States. Electronic address:

Omega loop C (residues 40-57) of cytochrome c (Cytc) is a common location for naturally-occurring variants of human Cytc that cause thrombocytopenia 4 (THC4). These variants are characterized by significant increases in the intrinsic peroxidase activity of Cytc, which appears to be linked to increased dynamics in Ω-loop D (residues 71-85). The mutations in Ω-loop C enhance the dynamics of Ω-loop D by decreasing the acid dissociation constant of the trigger group (pK) of the alkaline conformational transition.

View Article and Find Full Text PDF

Rational design of tunable pH switches through shadow-strand hybridization-actuated displacement engineering.

Nucleic Acids Res

September 2025

Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.

Local pH variations play a pivotal role in numerous critical biological processes. However, achieving the tunability and selectivity of pH detection remains a challenge. Here, we present a DNA-based strategy that enables programmable and selective pH responses, which is termed shadow-strand hybridization-actuated displacement engineering (SHADE).

View Article and Find Full Text PDF

Distinct association of HRAS and KRAS with Mn ion illustrated by paramagnetic NMR.

Magn Reson Lett

February 2025

State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.

Rat sarcoma virus oncogene (RAS) proteins are of crucial oncogenic proteins and are involved in several essential intracellular processes. The RAS protein has an intrinsic metal binding site for Mg, which is important for the conformational stability of the active site. Recently, it was reported that a second metal ion binding site, located further from the active site in HRAS (Harvey RAS homolog), binds Ca with millimolar affinity.

View Article and Find Full Text PDF

With the goal of manipulating (bio)chemical processes, photoswitches emerge as important assets in molecular nanotechnology. To guide synthetic strategies toward increasingly more efficient systems, conformational dynamics studies performed with atomic rigor are in demand, particularly if this information can be extracted with control over the size of a perturbing solvation layer. Here, we use jet-cooled rotational spectroscopy and quantum chemistry calculations to unravel the structure and micro-hydration dynamics of a prototype photoswitch.

View Article and Find Full Text PDF