98%
921
2 minutes
20
The solvation structures of calcium (Ca) and magnesium (Mg) ions with the presence of hydroxide (OH) ion in water are essential for understanding their roles in biological and chemical processes but have not been fully explored. molecular dynamics (AIMD) is an important tool to address this issue, but two challenges exist. First, an accurate description of OH from AIMD needs an appropriate exchange-correlation functional. Second, a long trajectory is needed to reach an equilibrium state for the Ca-OH and Mg-OH ion pairs in aqueous solutions. Herein, we adopt a deep potential molecular dynamics (DPMD) method to simulate 1 ns trajectories for the Ca-OH and Mg-OH ion pairs in water; the DPMD method provides efficient machine-learning-based models that have the accuracy of the SCAN exchange-correlation functional within the framework of density functional theory. The solvation structures of the cations and the OH in terms of three different species have been systematically investigated. On the one hand, we find that OH have more significant effects on the solvation structure of Ca than that of Mg. We observe that the OH substantially affects the orientation angles of water molecules surrounding the cation. Through the time correlation functions, we conclude that the water molecules in the first solvation shell of Ca change their preferred orientation faster than those of Mg. On the other hand, with the presence of the cation in the first solvation shell of OH, we find that the hydrogen bonds of OH are severely altered, and the adjacent water molecules of OH are squeezed. The two cations have substantially different effects on the solvation structure of OH. Our work provides new insight into the solvation structures of Ca and Mg in water with the presence of OH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp04105g | DOI Listing |
Inorg Chem
September 2025
Laboratoire de Chimie Physique Matière et Rayonnement (LCPMR), CNRS UMR 7614, Sorbonne Université (SU), 4 place Jussieu, Paris 75005, France.
The one-photon KV X-ray photoelectron spectra of Na and its hydrated clusters [Na(HO)] ( = 1-6) are dominated by the unusual 1s → 1s3s transition. KV spectroscopy also reveals a pronounced redistribution of the 1s → 1s3p transition cross sections, directly correlated with hydration number and molecular arrangement. Its intrinsic two-step nature, involving simultaneous core ionization and core excitation, enables detailed investigation of solvation-induced electronic structure changes, including dipole-forbidden excitations, core-valence charge transfer, and subtle 1s → V energy shifts.
View Article and Find Full Text PDFInorg Chem
September 2025
Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
The solvation structure of an Np ion in an aqueous, noncomplexing and nonoxidizing environment of trifluoromethanesulfonic (triflic) acid was investigated with X-ray absorption spectroscopy (XAS) combined with ab initio molecular dynamics (AIMD) and time-dependent density functional theory (TDDFT) calculations. Np L-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data were collected for Np in 1, 3, and 7 M triflic acid using a laboratory-scale spectrometer and separately at a synchrotron facility, producing data sets in excellent agreement. TDDFT calculations revealed a weak pre-edge feature not previously reported for Np L-edge XANES.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
High entropy electrolytes show great potential in the design of next generation batteries. Demonstrating how salt components of high entropy electrolytes influence the charge storage performance of batteries is essential in the tuning and design of such advanced electrolytes. This study investigates the transport and interfacial properties for lithium hexafluorophosphate (LiPF) in ethylene carbonate and dimethyl carbonate (EC/DMC) solvent with commonly used additives for high entropy electrolytes (LiTFSI, LiDFOB, and LiNO).
View Article and Find Full Text PDFChemistry
September 2025
Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der Ruhr, Germany.
In this study, we seek to deepen the understanding of the Fe effect in Ni-oxyhydroxide-mediated oxygen evolution reaction (OER) electrocatalysis in alkaline conditions, where extremely small amounts of Fe can have a dramatic impact on catalytic performance. For this purpose, Density Functional Theory (DFT) electronic structure calculations with implicit solvation description is employed in a constant pH/potential simulation framework. Nanoparticle models are considered for the nickel-based oxyhydroxide material with different degrees of Fe incorporation, and the pH/U-dependent interface structure is studied.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry Education and Graduate Department of Chemical Materials, Pusan National University, Busan 46241, Republic of Korea.
Alkali salt-doped ionic liquids are emerging as promising electrolyte systems for energy applications, owing to their excellent interfacial stability. To address their limited ionic conductivity, various strategies have been proposed, including modifying the ion solvation environment and enhancing the transport of selected ions (e.g.
View Article and Find Full Text PDF