Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A chiral glycerol derivative, namely 3-amino-1,2-propanediol, was employed for as the hydrogen bond donor (HBD) in the design of a new deep eutectic solvent (DES) with choline chloride acting as the hydrogen bond acceptor (HBA). The novel mixture was characterized and unambiguously classified as a DES. Furthermore, its synthetic usefulness was demonstrated in the room-temperature -butyllithium-addition under air to carbonyl compounds and benzyl chloride. In some cases, pure products (100% conversion) were obtained by a simple extractive work-up in up to 72% isolated yield, thus suggesting the potential practical usefulness of this procedure as a green alternative to the classical Schenk procedure in volatile organic solvents for the synthesis of tertiary alcohols. The chirality of the HBD, bearing an interesting basic primary amino group, is an intriguing feature currently under investigation for further exploitation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738533PMC
http://dx.doi.org/10.3390/molecules27238566DOI Listing

Publication Analysis

Top Keywords

deep eutectic
8
eutectic solvent
8
hydrogen bond
8
design chiral
4
chiral deep
4
solvent based
4
based 3-amino-12-propanediol
4
3-amino-12-propanediol application
4
application organolithium
4
organolithium chemistry
4

Similar Publications

Effective removal of trace heavy metal ions from aqueous bodies is a pressing problem and requires significant improvement in the area of absorbent material in terms of removal efficiency and sustainability. We propose an efficient strategy to enhance the adsorption efficiency of carbon nanotubes (CNTs) by growing dendrimers on their surface. First, CNTs were pre-functionalized with maleic acid (MA) via Diels-Alder reaction in presence of a deep eutectic solvent under ultrasonication.

View Article and Find Full Text PDF

Extracting soluble lignin from poplar sawdust via ternary cetyltrimethylammonium bromide-based deep eutectic solvent pretreatment for the fabrication of biodegradable films.

Int J Biol Macromol

September 2025

School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu Province, China.. Electronic address:

The multi-component deep eutectic solvents (DES) have emerged as indispensable tools in the lignocellulosic pretreatment process, facilitating the efficient biotransformation of biomass sugars into valuable products. In this investigation, FeCl was ingeniously incorporated to amplify the pretreatment efficacy of a DES synthesized from cetyltrimethylammonium bromide (CTAB) and lactic acid (LA), specifically targeting poplar sawdust (PS). Remarkably, under the meticulously optimized molar ratio of 1: 4:1, this innovative ternary DES achieved an unprecedented removal of 68.

View Article and Find Full Text PDF

Strong Microbasicity in PVA/ChCl Eutectogels Induced by a Large Population of Bound Water.

J Phys Chem B

September 2025

School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.

Eutectogels have emerged as versatile materials for wearable electronics, optical sensors, and biomedical applications. This study introduced the first investigation of microenvironmental basicity in poly(vinyl alcohol)/choline chloride (PVA/ChCl) eutectogels using lumichrome as a fluorescent probe. The incorporation of ChCl was demonstrated to enhance the microbasicity of PVA films, as evidenced by the significant promotion of lumichrome deprotonation.

View Article and Find Full Text PDF

With the continuous development of flexible sensors and flexible energy storage devices, gel materials with good flexibility, toughness, and tunable properties have attracted wide attention. Deep eutectic solvents (DES) have an obvious advantage of thermal and chemical stability over water. Therefore, eutectogels can effectively solve the problem of insufficient stability of traditional hydrogels.

View Article and Find Full Text PDF

A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.

View Article and Find Full Text PDF