Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Drugs that target human thymidylate synthase (hTS), a dimeric enzyme, are widely used in anticancer therapy. However, treatment with classical substrate-site-directed TS inhibitors induces over-expression of this protein and development of drug resistance. We thus pursued an alternative strategy that led us to the discovery of TS-dimer destabilizers. These compounds bind at the monomer-monomer interface and shift the dimerization equilibrium of both the recombinant and the intracellular protein toward the inactive monomers. A structural, spectroscopic, and kinetic investigation has provided evidence and quantitative information on the effects of the interaction of these small molecules with hTS. Focusing on the best among them, , we have shown that it inhibits hTS in cancer cells and accelerates its proteasomal degradation, thus causing a decrease in the enzyme intracellular level. also showed a superior anticancer profile to fluorouracil in a mouse model of human pancreatic and ovarian cancer. Thus, over sixty years after the discovery of the first TS prodrug inhibitor, fluorouracil, breaks the link between TS inhibition and enhanced expression in response, providing a strategy to fight drug-resistant cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9831607PMC
http://dx.doi.org/10.7554/eLife.73862DOI Listing

Publication Analysis

Top Keywords

thymidylate synthase
8
proteasomal degradation
8
destabilizers thymidylate
4
synthase homodimer
4
homodimer accelerate
4
accelerate proteasomal
4
degradation inhibit
4
inhibit cancer
4
cancer growth
4
growth drugs
4

Similar Publications

Objectives: Vitamin B12 plays a vital role in folate-mediated one-carbon metabolism (FOCM), a series of one-carbon transfer reactions that generate nucleotides (thymidylate (dTMP) and purines) and methionine. Inadequate levels of B12 impair FOCM, depressing de novo thymidylate (dTMP) synthesis, which in turn leads to uracil accumulation in DNA. This phenomenon has been well documented in nuclear DNA.

View Article and Find Full Text PDF

Substituting Superhalogens for the Fluorine Atom of 5-Fluorouracil: A New Approach to Modulate its Structure, Electronic Properties, and Chemical Reactivity.

Chemphyschem

September 2025

Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, P. R. China.

The development of 5-fluorouracil (5-FU) analogs contributes to overcome its side effects and drug resistance. To explore more 5-FU analogs, the substituent effect of BO, NO, and PO on the geometric structure, electronic properties, and reactivity of 5-FU has been systematically studied by density functional theory calculations and molecular docking in this article. It is revealed that the introduced superhalogens can not only form stable covalent bonds with the pyrimidine ring, like the original F atom in 5-FU, but also pose significant effect on the geometric and electronic structures of 5-FU.

View Article and Find Full Text PDF

Combining pemetrexed (PEM) with Osimertinib (OSI) improves outcomes in epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC), but optimal scheduling remains undefined. Sequential PEM → OSI strategies may outperform concurrent administration; however, the critical dosing interval determining synergy has not been explored. : PEM pharmacodynamics were divided into an OSI-antagonized early phase (S-phase arrest and DNA damage accumulation) and OSI-synergized late phase (DNA damage peak, apoptosis initiation, and feedback EGFR activation).

View Article and Find Full Text PDF

Acquired resistance to 5-fluorouracil/leucovorin (5-FU/LV) frequently develops during treatment of metastatic colorectal (mCRC), but the causes are incompletely understood. We aim to: (i) identify the causes of 5-FU/LV resistance under physiological folate; and (ii) determine if a polymeric fluoropyrimidine (FP) CF10 remains potent to CRC cells selected for 5-FU/LV resistance. 5-FU/LV-resistant CRC cells were selected by repeated passaging with increasing 5-FU/LV concentrations, and resistance factors were calculated from dose-response studies.

View Article and Find Full Text PDF