Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Differentiation of central disorders of hypersomnolence (DOH) is challenging but important for patient care. This study aimed to investigate whether biomarkers derived from sleep structure evaluated both by manual scoring as well as with artificial intelligence (AI) algorithms allow distinction of patients with different DOH. We included video-polysomnography data of 40 narcolepsy type 1 (NT1), 26 narcolepsy type 2 (NT2), 23 patients with idiopathic hypersomnia (IH) and 54 participants with subjective excessive daytime sleepiness (sEDS). Sleep experts manually scored sleep stages. A previously validated AI algorithm was employed to obtain automatic hypnograms and hypnodensity graphs (where each epoch is represented as a mixture of sleep stage probabilities). One-thousand-three features describing sleep architecture and instability were extracted from manual/automatic hypnogram and hypnodensity graphs. After feature selection, random forest classifiers were trained and tested in a 5-fold-cross-validation scheme to distinguish groups pairwise (NT1-vs-NT2, NT1-vs-IH, …) and single groups from the pooled remaining ones (NT1-vs-rest, NT2-vs-rest,…). The accuracy/F1-score values obtained in the test sets were: 0.74 ± 0.04/0.79 ± 0.05 (NT1-vs-NT2), 0.89 ± 0.09/0.91 ± 0.08 (NT1-vs-IH), 0.93 ± 0.06/0.91 ± 0.07 (NT1-vs-sEDS), 0.88 ± 0.04/0.80 ± 0.07 (NT1-vs-rest), 0.65 ± 0.10/0.70 ± 0.09 (NT2-vs-IH), 0.72 ± 0.12/0.60 ± 0.10 (NT2-vs-sEDS), 0.54 ± 0.19/0.38 ± 0.13 (NT2-vs-rest), 0.57 ± 0.11/0.35 ± 0.18 (IH-vs-sEDS), 0.71 ± 0.08/0.35 ± 0.10 (IH-vs-rest) and 0.76 ± 0.08/0.71 ± 0.13 (sEDS-vs-rest). The results confirm previous findings on sleep instability in patients with NT1 and show that combining manual and automatic AI-based sleep analysis could be useful for better distinction of NT2 from IH, but no precise sleep biomarker of NT2 or IH could be identified. Validation in a larger and multi-centric cohort is needed to confirm these findings.

Download full-text PDF

Source
http://dx.doi.org/10.1093/sleep/zsac288DOI Listing

Publication Analysis

Top Keywords

differentiation central
8
central disorders
8
disorders hypersomnolence
8
sleep
8
narcolepsy type
8
hypnodensity graphs
8
hypersomnolence manual
4
manual artificial-intelligence-derived
4
artificial-intelligence-derived polysomnographic
4
polysomnographic measures
4

Similar Publications

Antiplatelet therapy and central nervous system hematomas: a cohort study using real-world data from the FAERS and vigiaccess databases.

Int J Surg

September 2025

Department of Pharmacy, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China.

Background: Antiplatelet therapy is a cornerstone in the management of atherosclerotic cardiovascular disease. However, the risk profile of central nervous system (CNS) hematomas associated with antiplatelet agents remains incompletely characterized.

Methods: We analyzed CNS-related hematoma adverse event (hAE) reports across the four antiplatelet drugs, using data from the U.

View Article and Find Full Text PDF

Utility and performance of cerebrospinal fluid cytology in discriminating central nervous system infections and brain tumors.

J Neurooncol

September 2025

Department of Neurology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, China.

Background And Objective: Differentiating central nervous system infections (CNSIs) from brain tumors (BTs) is difficult due to overlapping features and the limited individual indicators, and cerebrospinal fluid (CSF) cytology remains underutilized. To improve differential diagnosis, we developed a model based on 9 early, cost-effective cerebrospinal fluid parameters, including CSF cytology.

Methods: Patients diagnosed with CNSIs or BTs at Xiangya Hospital of Central South University between October 1st, 2017 and March 31st, 2024 were enrolled and divided into the training set and the test set.

View Article and Find Full Text PDF

Background: The dysregulation of long-chain noncoding RNAs (lncRNAs) causes several complex human diseases including neurodegenerative disorders across the globe.

Methods And Results: This study aimed to investigate lncRNA expression profiles of Withania somnifera (WS)-treated human neuroblastoma SK-N-SH cells at different timepoints (3 & 9 h) and concentrations (50 & 100 µg/mL) using RNA sequencing. Differential gene expression analysis showed a total of 4772 differentially expressed lncRNAs, out of which 3971 were upregulated and 801 were downregulated compared to controls.

View Article and Find Full Text PDF

Defective wounds pose health risks, and treatment is challenging. Umbilical cord-derived mesenchymal stem cells (UCMSCs) show promise for healing. Primary UCMSCs were isolated and extracted in vitro, and the proliferation and differentiation characteristics were detected by flow cytometry and trilineage differentiation, and a 3D spherical cell culture was performed.

View Article and Find Full Text PDF

Development of dental caries is a dynamic process; yet, there is limited knowledge on microbial differences at various stages of caries at higher resolution. To investigate the shifting microbiome profiles across different caries stages, 30 children were enrolled in this study, including 15 caries-active patients and 15 caries-free individuals. Plaque samples were collected from the buccal surface of caries-free subjects, defined as confident health (CH; = 15).

View Article and Find Full Text PDF