Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of breast cancer is usually related to multiple pathways. A combinatory therapeutic system that combines drug/siRNA targeting several independent pathways has become an attractive approach to reduce the side effects and improve the efficiency of antitumor drugs. Herein, we designed a unique micelle-liposome hybrid nanoparticle platform for the combinatory administration of the cytotoxic drug DOX and Sphk2-siRNA for the treatment of multidrug-resistant (MDR) cancer. The synthesized lipid dioleoyl ethanolamine (DE) and pH-responsive DOPE were used to produce DOX/siRNA co-loaded hybrid nanoparticle (DOX-MC-siSphk2/ASLNP), with high drug-loading capacity and transfection efficacy. We demonstrated that simultaneous cellular endocytosis of DOX/siRNA induced by nanoparticles in MCF-7/ADR cells could acquire higher drug cytotoxicity and contribute to increasing the apoptosis of tumor cell. Furthermore, DOX-MC-siSphk2/ASLNP could significantly block the tumor growth of MDR breast cancer in xenograft mouse model with lower cardiotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2022.113532DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
hybrid nanoparticle
8
stimulus-responsive hybrid
4
hybrid nanoparticles
4
nanoparticles based
4
based multiple
4
multiple lipids
4
lipids co-delivery
4
co-delivery doxorubicin
4
doxorubicin sphk2-sirna
4

Similar Publications

Chemotherapeutic resistance is a significant issue in the treatment of breast cancer, which is related to pyroptosis inhibition. Increasing evidence suggests that long non-coding RNAs (lncRNAs) contribute to tumorigenesis and drug resistance. In this study we investigated the role of the lncRNA STMN1P2 in doxorubicin resistance in breast cancer, as well as its correlation with pyroptosis inhibition.

View Article and Find Full Text PDF

Comprehensive genomic profiling (CGP) expands treatment options for solid tumor patients and identifies hereditary cancers. However, in Japan, confirmatory tests have been conducted in only 31.6% of patients with presumed germline pathogenic variants (GPVs) detected through tumor-only testing.

View Article and Find Full Text PDF

Purpose: Recent advancements in medical technologies have made trans-arterial treatment of breast cancer feasible. Consequently, understanding the vascular anatomies of breast cancers and axillary lymph node metastases has become indispensable for sophisticated treatments. The aim of this study was to determine the vascular anatomy of the breast, which is crucial for trans-arterial chemoembolization in patients with breast cancer.

View Article and Find Full Text PDF