98%
921
2 minutes
20
Pyrimidine ribonucleotide de novo biosynthesis pathway (PRdnBP) is an important pathway to produce pyrimidine nucleosides. We attempted to systematically investigate PRdnBP in with genome-scale metabolic models and utilized the models to guide strain design. The balance of central carbon metabolism and PRdnBP affected the production of cytidine from glucose. Using Bayesian metabolic flux analysis, the effect of modified PRdnBP on the metabolic network was analyzed. The acetate overflow became coupled with PRdnBP flux, while they were originally independent under oxygen-sufficient conditions. The coupling between cytidine production and acetate secretion in the modified strain was weakened by deletion, which resulted in further improving the efficient accumulation of cytidine. In total, 1.28 g/L of cytidine with a yield of 0.26 g/g glucose was produced. The yield of cytidine produced by is higher than previous reports. Our strategy provides an effective attempt to find metabolic bottlenecks in genetically engineered bacteria by using flux coupling analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.2c00431 | DOI Listing |
BMC Microbiol
September 2025
Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 11421, Egypt.
Background: The emergence of drug-resistant pathogens has stimulated the need for the development of new antimicrobial agents. Epigenetic modulation by suppressing epigenetic inhibitors, such as 5-azacytidine (5-aza), has been shown to activate silent biosynthetic gene clusters within a fungus and causes the production of novel secondary metabolites. This research examined this epigenetic modification strategy in the poorly studied filamentous fungus, Ceratorhiza hydrophila, which may help induce the additional production of bioactive compounds.
View Article and Find Full Text PDFACS Omega
September 2025
Centre of Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR 999078, China.
Tyrosinase, a copper-dependent oxidase, plays a critical role in melanin biosynthesis and is a target in skin-whitening cosmetics. Conventional inhibitors like arbutin and kojic acid are widely used but suffer from cytotoxicity, instability, and inconsistent efficacy, highlighting the need for safer, more effective alternatives. In this study, two ligand-based machine learning models were developed: one to predict the biological activity of compounds and the other to estimate specific pIC values.
View Article and Find Full Text PDFFront Public Health
September 2025
Department of Pharmacy, Mindong Hospital Affiliated to Fujian Medical University, Ningde, Fujian, China.
Background: Results from the GEMSTONE-303 trial indicate that compared with placebo plus capecitabine and oxaliplatin (PLA-CAP), sugemalimab plus capecitabine and oxaliplatin (SUG-CAP) as first-line therapy provides clinical benefits for patients with advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma with programmed cell death ligand 1 (PD-L1) combined positive score (CPS) ≥5. However, the addition of sugemalimab increases medical costs. This study aimed to assess the cost-effectiveness of SUG-CAP vs.
View Article and Find Full Text PDFBrain Dev
September 2025
Department of Pediatrics, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku, Kochi 783-8505, Japan.
Fukuyama congenital muscular dystrophy (FCMD, a severe form of muscular dystrophy characterized by brain structural anomalies and ocular complications due to neuronal migration disorders, is notably limited mainly to Japan. Ninety percent of patients are unable to walk throughout their lives and die before the age of 20 due to respiratory failure and cardiomyopathy. At present, there is no cure.
View Article and Find Full Text PDF