A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Reactive-diffusion epidemic model on human mobility networks: Analysis and applications to COVID-19 in China. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The complex dynamics of human mobility, combined with sporadic cases of local outbreaks, make assessing the impact of large-scale social distancing on COVID-19 propagation in China a challenge. In this paper, with the travel big dataset supported by Baidu migration platform, we develop a reactive-diffusion epidemic model on human mobility networks to characterize the spatio-temporal propagation of COVID-19, and a novel time-dependent function is incorporated into the model to describe the effects of human intervention. By applying the system control theory, we discuss both constant and time-varying threshold behavior of proposed model. In the context of population mobility-mediated epidemics in China, we explore the transmission patterns of COVID-19 in city clusters. The results suggest that human intervention significantly inhibits the high correlation between population mobility and infection cases. Furthermore, by simulating different population flow scenarios, we reveal spatial diffusion phenomenon of cases from cities with high infection density to cities with low infection density. Finally, our model exhibits acceptable prediction performance using actual case data. The localized analytical results verify the ability of the PDE model to correctly describe the epidemic propagation and provide new insights for controlling the spread of COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677564PMC
http://dx.doi.org/10.1016/j.physa.2022.128337DOI Listing

Publication Analysis

Top Keywords

human mobility
12
reactive-diffusion epidemic
8
epidemic model
8
model human
8
mobility networks
8
human intervention
8
infection density
8
model
6
human
5
covid-19
5

Similar Publications