98%
921
2 minutes
20
Having played important roles in human growth and development, livestock animals are regarded as integral parts of society. However, industrialization has depleted natural resources and exacerbated climate change worldwide, spurring the emergence of various diseases that reduce livestock productivity. Meanwhile, a growing human population demands sufficient food to meet their needs, necessitating innovations in veterinary sciences that increase productivity both quantitatively and qualitatively. We have been able to address various challenges facing veterinary and farm systems with new scientific and technological advances, which might open new opportunities for research. Recent breakthroughs in multi-omics platforms have produced a wealth of genetic and genomic data for livestock that must be converted into knowledge for breeding, disease prevention and management, productivity, and sustainability. Vetinformatics is regarded as a new bioinformatics research concept or approach that is revolutionizing the field of veterinary science. It employs an interdisciplinary approach to understand the complex molecular mechanisms of animal systems in order to expedite veterinary research, ensuring food and nutritional security. This review article highlights the background, recent advances, challenges, opportunities, and application of vetinformatics for quality veterinary services.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691653 | PMC |
http://dx.doi.org/10.3389/fvets.2022.1008728 | DOI Listing |
J Chem Inf Model
September 2025
Department of Chemistry, Delaware State University, Dover, Delaware 19901, United States.
The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.
View Article and Find Full Text PDFChannels (Austin)
December 2025
Biorheology Research Laboratory, Faculty of Health, Griffith University, Gold Coast, Australia.
The hallmarks of mechanosensitive ion channels have been observed for half a century in various cell lines, although their mechanisms and molecular identities remained unknown until recently. Identification of the bona fide mammalian mechanosensory Piezo channels resulted in an explosion of research exploring the translation of mechanical cues into biochemical signals and dynamic cell morphology responses. One of the Piezo isoforms - Piezo1 - is integral in the erythrocyte (red blood cell; RBC) membrane.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Materials DX Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
The quantum mechanics/molecular mechanics (QM/MM) method is a powerful approach for investigating solid surfaces in contact with various types of media, since it allows for flexible modeling of complex interfaces while maintaining an all-atom representation. The mean-field QM/MM method is an average reaction field model within the QM/MM framework. The method addresses the challenges associated with the statistical sampling of interfacial atomic configurations of a medium and enables efficient calculation of free energies.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
We demonstrate a class of Co and CoPc molecular Kondo boxes on the Au(111) surface through scanning tunneling microscopy experiments and first-principles calculations. The π-electron states of the CoPc molecule hybridize with the conduction electron states of the Au(111) substrate, imparting itinerantlike electron characteristics. Because of the high symmetry matching between the d_{π} orbitals of Co adatoms and the π orbitals of CoPc, the large orbital overlap predominates the formation of a Kondo singlet within the molecular complexes that prevail over the competition from the metal substrate, enabling them effectively as the molecular Kondo boxes.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States.
Ionic liquids (ILs) have been gaining increasing focus in a variety of applications including emerging electric-propulsion concepts. A quantitative understanding of how IL ions fragment during high-energy collisions with background gases is therefore essential for interpreting mass spectra, predicting ion lifetimes in plasma and vacuum environments, and designing IL-based technologies. This work uses molecular dynamics (MD) simulations with a reactive force field to numerically model the collision-induced dissociation (CID) of isolated ions (both positive and negative) and ion clusters (2:1 and 1:2 clusters) of the prototypical ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF), colliding with a nitrogen (N) molecule, exploring all possible fragmentation channels arising from the breaking of both ionic and covalent bonds at collision energies ranging from 10 electron volts (eV) to 100 electron volts (eV) in the laboratory frame.
View Article and Find Full Text PDF