Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Background: Bone tissue engineering has shown to be a promising strategy for repairing bone defects without causing harmful side effects to the patient. Three main building blocks of tissue engineering, including seeding cells, scaffold, and signaling molecules, are required for adequate bone regeneration. The human amniotic membrane (hAM) is the innermost of the placental membranes. In addition to providing a source of stem cells and growth factors, hAM has several features that make it an appropriate scaffold containing stem cells for use in tissue engineering purposes. The present investigation aimed to assess the effect of bone morphogenetic protein-9 (BMP-9) combined with phenamil and simvastatin on osteogenic induction of hAM with its human amniotic membrane epithelial cells (hAECs).
Method: Methods: Using six different osteogenic medium (OMs), we cultured hAM for 14 days. The basic OMs were chosen as the first group and other media were made by adding BMP-9, phenamil, simvastatin, BMP-9 alongside phenamil, and BMP-9 alongside simvastatin to the basic OMs. Finally, viability assay, tissue mineralization, calcium and phosphate content determination, and measurement of lactic acid dehydrogenase (LDH), and alkaline phosphatase (ALP) activity were performed.
Results: Results: Among all study groups, groups containing simvastatin showed a significantly lower level of viability. Although all media could induce osteogenic features, the hAECs cultured in media containing BMP-9 and phenamil demonstrated a wider area of mineralization and a significantly higher level of calcium and phosphate content, LDH, and ALP activity.
Conclusion: Conclusion: Our findings indicated that the use of phenamil together with BMP-9 could synergistically show in situ osteogenic induction in hAECs, which could be a new insight into translational medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841223 | PMC |
http://dx.doi.org/10.52547/ibj.3748 | DOI Listing |