Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We highlight recent developments and avenues for advancement, which can improve insight into the causes of changes in the spatiotemporal dynamics of forest Geometridea moth species (hereafter 'geometrids'). Some forest geometrids possess fundamental biological traits, which make them particularly liable to outbreak range expansions and host shifts mitigated by climate change. Indeed, recently observed changes in geometrid spatiotemporal dynamics represent both new research opportunities and challenges for empirically testing drivers of intra- and interspecific spatial synchrony, including the role of trophic interactions and biological traits (e.g. dispersal ability). We advocate that the emerging field of near-term ecological forecasting holds promise for studies of the spatiotemporal dynamics of forest geometrids and could be tailored to give both accurate predictions at management-relevant timescales and new insights into the mechanisms that underlie spatiotemporal population dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cois.2022.100990 | DOI Listing |