Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, a series of indole-containing pyrazole-carbohydrazide derivatives A1-A25 were synthesized, and their biological activity on tubulin polymerization inhibition and mitotic catastrophe was evaluated. For introducing indole group to CA-4 pattern, the carbohydrazide linker was used for the first time. As the top hit, A18 suggested notable antiproliferation efficacy and tubulin polymerization inhibitory activity. Inferring comparable antitubulin effect with the positive control Colchicine, A18 indicated obviously lower cyto-toxicity. The cell scratch test showed that A18 could block the cell migration, while the confocal imaging depicted that A18 could induce the mitotic catastrophe via a Colchicine-like approach. The docking simulation visualized the probable binding pattern of A18. With the information in this work, some new hints on modification might be involved in further tubulin-related investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ddr.22016DOI Listing

Publication Analysis

Top Keywords

tubulin polymerization
12
mitotic catastrophe
8
a18
5
discovery pyrazole-carbohydrazide
4
pyrazole-carbohydrazide indole
4
indole moiety
4
moiety tubulin
4
polymerization inhibitors
4
inhibitors anti-tumor
4
anti-tumor candidates
4

Similar Publications

Carboxy-terminal tails (CTTs) of tubulin proteins are sites of regulating microtubule function. We previously conducted a genetic interaction screen and identified Kip3, a kinesin-8 motor, as potentially requiring the β-tubulin CTT (β-CTT) for function. Here we use budding yeast to define how β-CTT promotes Kip3 function and the features of β-CTT that are important for this mechanism.

View Article and Find Full Text PDF

Microtubules are crucial for various cellular processes, including cell division, where they form highly dynamic spindle fibers for chromosomal alignment and segregation. Interference with microtubule dynamics through microtubule targeting agents (MTAs) blocks progression through mitosis, ultimately resulting in apoptosis. Although MTAs have been effectively used as a frontline treatment for various cancers, multidrug resistance (MDR) often limits their effectiveness.

View Article and Find Full Text PDF

Protodrilidae is a small family of almost exclusively interstitial annelids that lack parapodia and chaetae and possess a basiepithelial nervous system. This study presents a histological description of Lindrilus flavocapitatus (Uljanin, 1877), a protodrilid species last examined morphologically in the early 20th century, and provides detailed information on the organization of its nervous and sensory systems using histochemical detection of catecholamines (CAs), scanning electron microscopy (SEM), and alpha-tubulin immunolabelling. The epidermal ciliary structures on the head show a species-specific distribution pattern, and SEM reveals three types of ciliary sensory structures, similar to those previously described in other protodrilids.

View Article and Find Full Text PDF

Tau-Derived Peptides Bearing Azobenzene on Side Chains for Light-Controllable Microtubule Polymerization.

Cytoskeleton (Hoboken)

September 2025

Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan.

The precise control of microtubule dynamics is essential for diverse cellular processes and is a promising target for optical regulation using photoresponsive molecules. In this study, we developed Tau-derived peptides bearing azobenzene moieties on their side chains that enabled reversible photocontrol of microtubule polymerization by binding to the inside of microtubules. Two peptide derivatives with azobenzene located at different positions were synthesized by simple on-resin Fmoc solid-phase chemistry.

View Article and Find Full Text PDF

Purpureocillium lilacinum is an opportunistic pathogenic fungus associated with endophthalmitis and keratitis. Previously, we isolated the strain P. lilacinum IFM 63780, notable for its high resistance to polyhexamethylene biguanide hydrochloride (PHMB), a common disinfectant and antiseptic used in dermatology and ophthalmology.

View Article and Find Full Text PDF