Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: Properly performed training is a matter of importance for endurance athletes (EA). It allows for achieving better results and safer participation. Recently, the development of machine learning methods has been observed in sports diagnostics. Velocity at anaerobic threshold (V), respiratory compensation point (V), and maximal velocity (V) are the variables closely corresponding to endurance performance. The primary aims of this study were to find the strongest predictors of V, V, V, to derive and internally validate prediction models for males (1) and females (2) under TRIPOD guidelines, and to assess their machine learning accuracy. : A total of 4001 EA (n = 3300, n = 671; age = 35.56 ± 8.12 years; BMI = 23.66 ± 2.58 kg·m; VO = 53.20 ± 7.17 mL·min·kg) underwent treadmill cardiopulmonary exercise testing (CPET) and bioimpedance body composition analysis. XGBoost was used to select running performance predictors. Multivariable linear regression was applied to build prediction models. Ten-fold cross-validation was incorporated for accuracy evaluation during internal validation. : Oxygen uptake, blood lactate, pulmonary ventilation, and somatic parameters (BMI, age, and body fat percentage) showed the highest impact on velocity. For V R = 0.57 (1) and 0.62 (2), derivation RMSE = 0.909 (1); 0.828 (2), validation RMSE = 0.913 (1); 0.838 (2), derivation MAE = 0.708 (1); 0.657 (2), and validation MAE = 0.710 (1); 0.665 (2). For V R = 0.62 (1) and 0.67 (2), derivation RMSE = 1.066 (1) and 0.964 (2), validation RMSE = 1.070 (1) and 0.978 (2), derivation MAE = 0.832 (1) and 0.752 (2), validation MAE = 0.060 (1) and 0.763 (2). For V R = 0.57 (1) and 0.65 (2), derivation RMSE = 1.202 (1) and 1.095 (2), validation RMSE = 1.205 (1) and 1.111 (2), derivation MAE = 0.943 (1) and 0.861 (2), and validation MAE = 0.944 (1) and 0.881 (2). : The use of machine-learning methods allows for the precise determination of predictors of both submaximal and maximal running performance. Prediction models based on selected variables are characterized by high precision and high repeatability. The results can be used to personalize training and adjust the optimal therapeutic protocol in clinical settings, with a target population of EA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696488PMC
http://dx.doi.org/10.3390/jcm11226688DOI Listing

Publication Analysis

Top Keywords

prediction models
12
derivation rmse
12
validation rmse
12
derivation mae
12
validation mae
12
endurance athletes
8
machine learning
8
running performance
8
validation
7
derivation
6

Similar Publications

Glycocins are a growing family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are O- and/or S-glycosylated. Using a sequence similarity network of putative glycosyltransferases, the thg biosynthetic gene cluster was identified in the genome of Thermoanaerobacterium thermosaccharolyticum. Heterologous expression in Escherichia coli showed that the glycosyltransferase (ThgS) encoded in the biosynthetic gene cluster (BGC) adds N-acetyl-glucosamine (GlcNAc) to Ser and Cys residues of ThgA.

View Article and Find Full Text PDF

Ambient Air Pollution and the Severity of Alzheimer Disease Neuropathology.

JAMA Neurol

September 2025

Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia.

Importance: Exposure to fine particulate matter air pollution (PM2.5) may increase risk for dementia. It is unknown whether this association is mediated by dementia-related neuropathologic change found at autopsy.

View Article and Find Full Text PDF

Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .

View Article and Find Full Text PDF

Uric acid to HDL ratio (UHR) is a new measure of inflammation that has been widely used to study cardiovascular disease relationships. The aim of this study was to investigate the relationship between uric acid to HDL ratio and hypertension. We found that UHR was positively associated with hypertension prevalence in a nationally representative sample of U.

View Article and Find Full Text PDF

Objectives: To evaluate the performance of artificial intelligence (AI)-based models in predicting elevated neonatal insulin levels through fetal hepatic echotexture analysis.

Methods: This diagnostic accuracy study analyzed ultrasound images of fetal livers from pregnancies between 37 and 42 weeks, including cases with and without gestational diabetes mellitus (GDM). Images were stored in Digital Imaging and Communications in Medicine (DICOM) format, annotated by experts, and converted to segmented masks after quality checks.

View Article and Find Full Text PDF