Intrinsically Disordered Proteins: An Overview.

Int J Mol Sci

Laboratory of Computational Biology, Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many proteins and protein segments cannot attain a single stable three-dimensional structure under physiological conditions; instead, they adopt multiple interconverting conformational states. Such intrinsically disordered proteins or protein segments are highly abundant across proteomes, and are involved in various effector functions. This review focuses on different aspects of disordered proteins and disordered protein regions, which form the basis of the so-called "Disorder-function paradigm" of proteins. Additionally, various experimental approaches and computational tools used for characterizing disordered regions in proteins are discussed. Finally, the role of disordered proteins in diseases and their utility as potential drug targets are explored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693201PMC
http://dx.doi.org/10.3390/ijms232214050DOI Listing

Publication Analysis

Top Keywords

disordered proteins
16
intrinsically disordered
8
proteins protein
8
protein segments
8
proteins
7
disordered
5
proteins overview
4
overview proteins
4
segments attain
4
attain single
4

Similar Publications

Degradation during production and delivery is a significant bottleneck in developing biomolecular therapies. Protein cages, formed by engineered variants of lumazine synthase, present an effective strategy for the microbial production and isolation of labile biomolecular therapies. Genetic fusion of the target polypeptide to a cage component protomer ensures its efficient encapsulation within the cage during production in host bacterial cells, thereby protecting it from degradation.

View Article and Find Full Text PDF

As the primary storage protein, highland barley gliadin (HBG) exhibits limitations in the processing of highland barley foods, primarily due to its abundant non-polar amino acids. In this study, HBG was utilized to prepare sugar-HBG complexes with pentose (xylose), hexoses (glucose and galactose), and disaccharides (lactose and maltose) in an aqueous system at a pH of 11 and a temperature of 75 °C. Subsequently, the structural and functional characteristics of these complexes were evaluated.

View Article and Find Full Text PDF

Water deficit stress causes devastating loss of crop yield worldwide. Improving crop drought resistance has become an urgent issue. Here we report that a group of abscisic acid (ABA)/drought stress-induced monocot-specific, intrinsically disordered, and highly proline-rich proteins, REPETITIVE PROLINE-RICH PROTEINS (RePRPs), play pivotal roles in drought resistance in rice seedlings.

View Article and Find Full Text PDF

Transcriptional condensates enrich phosphorylated PRMT2 to stimulate H3R8me2a deposition and hypoxic response in glioblastoma.

Sci China Life Sci

September 2025

State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Labora

Histone arginine methylation by protein arginine methyltransferases (PRMTs) is crucial for transcriptional regulation and is implicated in cancers. Despite their therapeutic potential, some PRMTs present challenges as drug targets due to their context-dependent activities. Here, we demonstrate that hypoxia triggers the rapid condensation of PRMT2, which is essential for its histone H3R8 asymmetric dimethylation (H3R8me2a) activity.

View Article and Find Full Text PDF

Phase separation in innate immunity: Teleost IL6Ra's evolutionary leap against viruses.

Int J Biol Macromol

September 2025

National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; International Resea

Phase separation has been discovered as a new form of regulation in innate immunity. Here, we found that IL6Ra in teleost fish has a unique intrinsic disordered region (IDR) in its amino acid sequence, distinguishing it from the IL6Ra of higher vertebrates. This unique feature endows IL6Ra with the ability to undergo liquid-liquid phase separation, enabling the organism to swiftly initiate an immune response at the early stages of viral infection.

View Article and Find Full Text PDF