Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nitrogen loss from urea fertiliser due to its high solubility characteristics has led to the invention of controlled release urea (CRU). Majority of existing CRU coatings are produced from a non-biodegradable, toxic and expensive synthetic polymers. This study determines the feasibility of fly ash-based geopolymer as a coating material for urea fertilizer. The effects of fly ash particle size (15.2 μm, 12.0 μm, and 8.6 μm) and solid to liquid (S : L) ratio (3 : 1, 2.8 : 1, 2.6 : 1, 2.4 : 1 and 2.2 : 1) on the geopolymer coating, the characterization such as FTIR analysis, XRD analysis, surface area and pore size analysis, setting time analysis, coating thickness, and crushing strength, and the release kinetics of geopolymer coated urea in water and soil were determined. Lower S : L ratio was beneficial in terms of workability, but it had an adverse impact on geopolymer properties where it increased porosity and decreased mechanical strength to an undesirable level for the CRU application. Geopolymer coated urea prepared from the finest fly ash fraction and lowest S : L ratio demonstrated high mechanical strength and slower urea release profile. Complete urea release was obtained in 132 minutes in water and 15 days in soil from geopolymer-coated urea whereas for uncoated urea it took only 20 minutes in water and 3 days in soil. Thus, geopolymer can potentially be used as a coating material for urea fertilizer to replace commonly used expensive and biodegradable polymer-based coatings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677526PMC
http://dx.doi.org/10.1039/d2ra06056fDOI Listing

Publication Analysis

Top Keywords

geopolymer coating
16
fly ash
12
coating material
12
s  l ratio
12
urea
11
material urea
8
urea fertilizer
8
geopolymer coated
8
coated urea
8
mechanical strength
8

Similar Publications

A ternary geopolymer mortar (TGM) was synthesized using steel slag (SS), granulated blast furnace slag (GGBS), and fly ash (FA) as raw materials. The effect of the SS content (0-60%) and the GGBS/FA mass ratio (5:1 to 1:5) on the TGM's setting time was studied. To address the issue of rapid setting, the impact of different mixing methods ((A) dry mixing, (B) pre-dissolution, and (C) pre-coating) and dosages of BaCl on the setting and hardening properties of TGM was further explored.

View Article and Find Full Text PDF

Geopolymers have emerged as promising materials for their superior thermal and mechanical properties, offering sustainable alternatives to conventional coatings. This study investigates the potential of Palm Oil Fuel Ash (POFA) as a raw material for fire-resistant geopolymer coatings. Through the optimization of POFA-to-alkaline activator (AA) ratios, NaOH concentrations, and curing temperatures, POFA-based coatings were synthesized and applied to mild steel substrates.

View Article and Find Full Text PDF
Article Synopsis
  • * Experiments were conducted with varying PE fiber volumes and PVA replacement ratios to examine how different fibers impact the mechanical properties of the SHGC; results indicated that increasing PE fibers improved ductility and a 100% PVA replacement maximized compressive strength.
  • * The findings suggest that a 25% PVA fiber replacement yields the best balance between economic and environmental benefits, offering a 12.5%
View Article and Find Full Text PDF

The reduction in the rheological parameters and dissolution rate of precursors in geopolymer coatings during early hydration significantly contributes to sagging. This study aims to improve the sag resistance of these coatings by incorporating diatomite filler. Rheological testing was conducted to assess the impact of diatomite and its concentration on the yield stress, plastic viscosity, and thixotropy of the geopolymer coatings.

View Article and Find Full Text PDF