98%
921
2 minutes
20
Circulating endothelial cells (CECs) and myeloid angiogenic cells (MACs) have the capacity to stabilize human blood vessels in vivo. Evidence suggests that these cells are depleted in dementia and in persons living with HIV (PWH), who have a higher prevalence of dementia and other cognitive deficits associated with aging. However, the associations of CECs and MACs with MRI-based measures of aging brain health, such as hippocampal gray matter volume, have not been previously demonstrated. The present study examined differences in these associations in 51 postmenopausal women with and without HIV infection. Gray matter volume was quantified using MRI. CECs and MACs were enumerated using fluorescence-activated cell sorting. Analyses examined the association of these cell counts with left and right hippocampal gray matter volume while controlling for age and hypertension status. The main finding was an interaction suggesting that compared to controls, postmenopausal PWH with greater levels of CECs and MACs had significantly greater hippocampus GMV. Further research is necessary to examine potential underlying pathophysiological mechanisms in HIV infection linking morpho-functional circulatory reparative processes with more diminished hippocampal volume in postmenopausal women.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13365-022-01101-3 | DOI Listing |
Sci Rep
February 2024
Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany.
Circulating endothelial cells (CEC) are arising as biomarkers for vascular diseases. However, whether they can be utilized as markers of endothelial cell (EC) senescence in vivo remains unknown. Here, we present a protocol to isolate circulating endothelial cells for a characterization of their senescent signature.
View Article and Find Full Text PDFSemin Cell Dev Biol
March 2024
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore. Electronic address:
The interests in blood endothelial cells arise from their therapeutic potential in vascular repair and regeneration. Our understanding of blood endothelial cells that exist in the circulation has been evolving significantly from the original concept of endothelial progenitor cells. Many studies have uncovered heterogeneities of blood endothelial subtypes where some cells express both endothelial and hematopoietic antigens, and others possess either mature or immature endothelial markers.
View Article and Find Full Text PDFTheranostics
February 2023
Institute of Physiology, Department of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany.
The regenerative potential of the heart after injury is limited. Therefore, cell replacement strategies have been developed. However, the engraftment of transplanted cells in the myocardium is very inefficient.
View Article and Find Full Text PDFJ Neurovirol
February 2023
Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA.
Circulating endothelial cells (CECs) and myeloid angiogenic cells (MACs) have the capacity to stabilize human blood vessels in vivo. Evidence suggests that these cells are depleted in dementia and in persons living with HIV (PWH), who have a higher prevalence of dementia and other cognitive deficits associated with aging. However, the associations of CECs and MACs with MRI-based measures of aging brain health, such as hippocampal gray matter volume, have not been previously demonstrated.
View Article and Find Full Text PDFStem Cell Res Ther
September 2020
Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
Background: Endothelial cells (ECs) are essential regulators of the vasculature, lining arteries, veins, and capillary beds. While all ECs share a number of structural and molecular features, heterogeneity exists depending on their resident tissue. ECs lining the choriocapillaris in the human eye are lost early in the pathogenesis of age-related macular degeneration (AMD), a common and devastating form of vision loss.
View Article and Find Full Text PDF