98%
921
2 minutes
20
Micro-analytical techniques to untangle Se distribution and chemical speciation in plants coupled with molecular biology analysis enable the deciphering of metabolic pathways responsible for Se tolerance and accumulation. Selenium (Se) is not essential for plants and is toxic at high concentrations. However, Se hyperaccumulator plants have evolved strategies to both tolerate and accumulate > 1000 µg Se g DW in their living above-ground tissues. Given the complexity of the biochemistry of Se, various approaches have been adopted to study Se metabolism in plants. These include X-ray-based techniques for assessing distribution and chemical speciation of Se, and molecular biology techniques to identify genes implicated in Se uptake, transport, and assimilation. This review presents these techniques, synthesises the current state of knowledge on Se metabolism in plants, and highlights future directions for research into Se (hyper)accumulation and tolerance. We conclude that powerful insights may be gained from coupling information on the distribution and chemical speciation of Se to genome-scale studies to identify gene functions and molecular mechanisms that underpin Se tolerance and accumulation in these ecologically and biotechnologically important plants species. The study of Se metabolism is challenging and is a useful testbed for developing novel analytical approaches that are potentially more widely applicable to the study of the regulation of a wide range of metal(loid)s in hyperaccumulator plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684236 | PMC |
http://dx.doi.org/10.1007/s00425-022-04017-8 | DOI Listing |
Nephrol Dial Transplant
September 2025
Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Background: We investigated circulating protein profiles and molecular pathways among various chronic kidney disease (CKD) etiologies to study its underlying molecular heterogeneity.
Methods: We conducted a proteomic biomarker analysis in the DAPA-CKD trial recruiting adults with and without type 2 diabetes with an eGFR of 25 to 75 mL/min/1.73m2 and a UACR of 200 to 5000 mg/g.
Macromol Biosci
September 2025
IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Barcelona, Spain.
This study investigates a multifunctional hydrogel system integrating carboxymethyl cellulose (CMC) in a 3D-printed limonene (LIM) scaffold coated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS). The system allows to enhance wound healing, prevent infections, and monitor the healing progress. CMC is crosslinked with citric acid (CA) to form the hydrogel matrix (CMC-CA), while the 3D-printed limonene (LIM) scaffold is embedded within the hydrogel to provide mechanical support.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
School of Science, RMIT University, Melbourne 3000, Australia.
Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.
View Article and Find Full Text PDFAm J Reprod Immunol
September 2025
Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Turkey.
Cell Mol Biol (Noisy-le-grand)
September 2025
Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.
View Article and Find Full Text PDF