A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Exposure to tolerable concentrations of aluminum triggers systemic and local oxidative stress and global proteomic modulation in the spinal cord of rats. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The tolerable aluminum (Al) intake levels for humans are constantly under review by regulatory agencies due to novel pre-clinical evidence on the neurotoxicity of prolonged Al exposure; however, little is known about the effects of Al on the spinal cord. This study aimed to investigate potential adverse effects on both spinal cord and systemic biochemical balance after prolonged exposure to a low dose of Al. Twenty adult rats were distributed in the control (distilled water) and exposed group (8.3 mg of AlCl/kg/day). After 60 days, both blood and spinal cord samples were collected for oxidative stress and proteomic analyses. In plasma and erythrocytes, glutathione level was not different between groups; however, exposure to AlCl significantly decreased glutathione level in the spinal cord. Thiobarbituric acid reactive substances levels in the plasma and spinal cord of animals from the control group were significantly lower than those animals exposed to AlCl. Exposure to AlCl significantly modulated the expression of proteins associated with the cell cycle, stimulus-response, cytoskeleton, nervous system regulation, protein activity, and synaptic signaling. Therefore, prolonged exposure to a low dose of Al triggered oxidative stress and proteomic changes that may affect spinal cord homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.137296DOI Listing

Publication Analysis

Top Keywords

spinal cord
28
oxidative stress
12
prolonged exposure
12
effects spinal
8
exposure low
8
low dose
8
stress proteomic
8
glutathione level
8
exposure alcl
8
spinal
7

Similar Publications