98%
921
2 minutes
20
Phloridzin is the most abundant polyphenolic compound in apple (Malus × domestica Borkh.), which results from the action of a key phloretin-specific UDP-2'-O-glucosyltransferase (MdPGT1). Here, we simultaneously assessed the effects of targeting MdPGT1 by conventional transgenesis and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing. To this end, we conducted transcriptomic and metabolic analyses of MdPGT1 RNA interference knockdown and genome-edited lines. Knockdown lines exhibited characteristic impairment of plant growth and leaf morphology, whereas genome-edited lines exhibited normal growth despite reduced foliar phloridzin. RNA-sequencing analysis identified a common core of regulated genes, involved in phenylpropanoid and flavonoid pathways. However, we identified genes and processes differentially modulated in stunted and genome-edited lines, including key transcription factors and genes involved in phytohormone signalling. Therefore, we conducted a phytohormone profiling to obtain insight into their role in the phenotypes observed. We found that salicylic and jasmonic acid were increased in dwarf lines, whereas auxin and ABA showed no correlation with the growth phenotype. Furthermore, bioactive brassinosteroids were commonly up-regulated, whereas gibberellin GA was distinctively altered, showing a sharp decrease in RNA interference knockdown lines. Expression analysis by reverse transcriptase-quantitative polymerase chain reaction expression analysis further confirmed transcriptional regulation of key factors involved in brassinosteroid and gibberellin interaction. These findings suggest that a differential modulation of phytohormones may be involved in the contrasting effects on growth following phloridzin reduction. The present study also illustrates how CRISPR/Cas9 genome editing can be applied to dissect the contribution of genes involved in phloridzin biosynthesis in apple.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.16036 | DOI Listing |
3 Biotech
October 2025
ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India.
Just as Gregor Mendel's laws of inheritance laid the foundation for modern genetics, the emergence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas systems has catalyzed a new era in precision genome engineering. CRISPR/Cas has revolutionized rice ( L.) breeding by enabling precise, transgene-free edits to improve yield, nutrition, and stress tolerance.
View Article and Find Full Text PDFPhysiol Plant
August 2025
Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.
In the alloplasmic lines of eggplant containing the cytoplasm of relative wild species, two types of cytoplasmic male sterility (CMS) are known: the pollen non-formation (PN) type and the anther indehiscent (AI) type. The gene responsible for PN-type CMS is presumed to be orf218, located in the mitochondrial genome. However, this presumption has been based on circumstantial evidence: (1) orf218 is present only in PN-CMS lines and their cytoplasmic donor, and (2) the amount of its transcripts differs between sterile and fertility-restored lines.
View Article and Find Full Text PDFFood Chem (Oxf)
December 2025
IGA Technology Services S.R.l., via Jacopo Linussio 51, I-33100 Udine, Italy.
In this paper, we have evaluated a targeted high-throughput massive parallel sequencing approach for detecting single nucleotide mutations or small genomic changes generated by new genomic techniques (NGT). We used unique molecular identifiers (UMIs) for the quantification of the mutant alleles and duplex sequencing to confirm a mutation on both strands to avoid polymerase chain reaction (PCR) artefacts or sequencing miss-calls. We tested the approach in blinded analyses on a set of mixed NGT-modified tomato lines and identified each single nucleotide mutation or small insert/deletion (InDel) down to a 0.
View Article and Find Full Text PDFPlant J
July 2025
BRIC-National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
Plant optimizes seed size, weight, vigor, and various other features during seed development, which are important not only for their successful propagation and establishment but also for effective agriculture. Despite several studies conducted, understanding how plants coordinate the regulatory mechanisms to achieve optimal seed size, weight, and vigor remains elusive. Here, our study reveals the role of rice heat shock transcription factor OsHSFC1b in modulating various seed attributes.
View Article and Find Full Text PDFFront Plant Sci
July 2025
Laboratorio de Agrobiotecnología, Estación Experimental Agropecuaria (EEA) Balcarce-Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Unidad de Estudios Agropecuarios y Desarrollo de la Innovación Tecnológica Agropecuaria (UEDDINTA)-Consejo Nacional de
Developing drought-tolerant potato varieties is increasingly important due to climate change and water scarcity, as potatoes are highly sensitive to water deficits that can significantly reduce yield and tuber quality. The cap-binding protein CBP80, involved in the abscisic acid (ABA) signalling pathway, has emerged as a promising target for improving drought tolerance in plants. In this study, we used CRISPR/Cas9 to edit the gene in the tetraploid potato cultivar Spunta.
View Article and Find Full Text PDF