98%
921
2 minutes
20
Modification of soil food webs by land management may alter the response of ecosystem processes to climate extremes, but empirical support is limited and the mechanisms involved remain unclear. Here we quantify how grassland management modifies the transfer of recent photosynthates and soil nitrogen through plants and soil food webs during a post-drought period in a controlled field experiment, using in situ C and N pulse-labelling in intensively and extensively managed fields. We show that intensive management decrease plant carbon (C) capture and its transfer through components of food webs and soil respiration compared to extensive management. We observe a legacy effect of drought on C transfer pathways mainly in intensively managed grasslands, by increasing plant C assimilation and C released as soil CO efflux but decreasing its transfer to roots, bacteria and Collembola. Our work provides insight into the interactive effects of grassland management and drought on C transfer pathways, and highlights that capture and rapid transfer of photosynthates through multi-trophic networks are key for maintaining grassland resistance to drought.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668848 | PMC |
http://dx.doi.org/10.1038/s41467-022-34449-5 | DOI Listing |
J Econ Entomol
September 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
The ability of parasitoid wasps to precisely locate hosts in complex environments is a key factor in suppressing pest populations. Chemical communication plays an essential role in mediating insect behaviors such as locating food sources, hosts, and mates. Odorant receptors (ORs) are the key connection between external odors and olfactory nerves.
View Article and Find Full Text PDFPLoS One
September 2025
College of Economics and Management, Inner Mongolia Agricultural University, Hohhot, China.
Against the backdrop of grassland ecological degradation, grassland transfer has become a crucial pathway for optimizing livestock resource allocation and promoting sustainable pastoral development. Based on survey data from 383 herder households in the farming-pastoral ecotone of Inner Mongolia, China, this study applies Heckman models, mediation models, and moderation models to examine the impact of digital technology on herders' grassland leasing-in decisions and the underlying mechanisms. The results indicate that digital technology significantly increases both the probability and the scale of grassland leasing-in among herders.
View Article and Find Full Text PDFNaturwissenschaften
September 2025
Laboratório de Ecologia E Conservação de Invertebrados, LECIN, Departamento de Ecologia E Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, PO Box 3037, CEP 37.203-202, Lavras, MG, Brasil.
Fire is a key natural disturbance influencing physical, chemical, and biological processes in the Cerrado. Ash, a fire byproduct, may significantly influence soil macrofauna through its chemical properties. Dung beetles (Scarabaeinae), critical components of Cerrado soil macrofauna, provide key ecological functions and services.
View Article and Find Full Text PDFOpen Life Sci
August 2025
College of Grassland Science, Inner Mongolia Agricultural University, No. 29 Ordos East Street, Saihan District, Hohhot, 010018, China.
This study investigates the diversity and distribution of fungi in var. (PSM) forests across Inner Mongolia, with a focus on understanding the environmental factors influencing fungal communities. High-throughput sequencing was utilized to analyze soil fungal communities across 12 PSM forest sites, alongside assessments of meteorological variables and soil enzyme activities.
View Article and Find Full Text PDFDNA Res
September 2025
Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
Sauvagesia rhodoleuca is an endangered species endemic to southern China. Due to human activities, only six fragmented populations remain in Guangdong and Guangxi. Despite considerable conservation efforts, its demographic history and evolution remain poorly understood, particularly from a genomic perspective.
View Article and Find Full Text PDF