[Responses of soil microbial community structure to litter inputs.].

Ying Yong Sheng Tai Xue Bao

Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia University, Yinchuan 750021, China.

Published: October 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Litter decomposition is one of the most important ecosystem processes, which plays a critical role in regu-lating nutrient cycling and energy flow in terrestrial ecosystems. The influence of litter inputs on soil microbial community is helpful for understanding the relationship between soil microbial diversity and terrestrial ecosystem function. We conducted a meta-analysis to examine how litter inputs affect soil microbial activity (fungi, bacteria, actinomycetes) and microbial biomass carbon, nitrogen in China. The results showed that compared with non-litter input, soil microbial biomass carbon and nitrogen were significantly increased by 3.9% and 4.4% respectively after litter inputs. Soil fungal PLFA, bacterial PLFA, and total microbial PLFA were increased by 4.0%, 3.1% and 2.4%, respectively. The effects of litter inputs differed significantly with climatic region, annual precipitation, vege-tation type, and soil pH. Under different climate conditions, the responses of soil microbe showed the trend of subtropical monsoon climatic region > temperate monsoon climatic region > temperate continental climatic region, which increased first and then decreased with increasing annual precipitation. Under different vegetation types, the responses of soil microbes showed the trend of broad-leaved forest > grassland ≈ mixed forest > coniferous forest.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202211.031DOI Listing

Publication Analysis

Top Keywords

soil microbial
20
litter inputs
16
climatic region
16
microbial community
8
soil
8
inputs soil
8
microbial biomass
8
biomass carbon
8
carbon nitrogen
8
annual precipitation
8

Similar Publications

Silica nanoparticles (SiONPs), as emerging foliar nanofertilizers, demonstrate promising potential in agriculture. However, whether foliar application of SiONPs alters belowground soil metabolites and microbe composition and abundance remains largely unknown. In this study, 3-week-old cucumber plants were foliar-sprayed with fumed or Stöber SiO NPs dosing at -4 mg of NPs per plant for 5 days.

View Article and Find Full Text PDF

Environmental Stresses Constrain Soil Microbial Community Functions by Regulating Deterministic Assembly and Niche Width.

Mol Ecol

September 2025

State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.

Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).

View Article and Find Full Text PDF

Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) play a crucial role in disease control by establishing symbiotic relationships with plant roots. AMF improve salinity tolerance in plants by regulating the Na/K ratio through selective ion transport and mediate osmotic regulation by inducing the accumulation of osmotic-compatible solutes such as glycine betaine and proline to enable plant cells to maintain water content and the metabolic balance. AMF can also activate antioxidant defense responses by stimulating enzymes that protect plant cells from harmful oxidation and pathological infections.

View Article and Find Full Text PDF

The role of biochar in combating microplastic pollution: a bibliometric analysis in environmental contexts.

Beilstein J Nanotechnol

August 2025

Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.

This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.

View Article and Find Full Text PDF