Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Emerging evidence suggests that circular RNA (circRNA) is an important regulator of a variety of pathological processes and serves as a promising biomarker for many complex human diseases. Nevertheless, there are relatively few known circRNA-disease associations, and uncovering new circRNA-disease associations by wet-lab methods is time consuming and costly. Considering the limitations of existing computational methods, we propose a novel approach named MNMDCDA, which combines high-order graph convolutional networks (high-order GCNs) and deep neural networks to infer associations between circRNAs and diseases. Firstly, we computed different biological attribute information of circRNA and disease separately and used them to construct multiple multi-source similarity networks. Then, we used the high-order GCN algorithm to learn feature embedding representations with high-order mixed neighborhood information of circRNA and disease from the constructed multi-source similarity networks, respectively. Finally, the deep neural network classifier was implemented to predict associations of circRNAs with diseases. The MNMDCDA model obtained AUC scores of 95.16%, 94.53%, 89.80% and 91.83% on four benchmark datasets, i.e., CircR2Disease, CircAtlas v2.0, Circ2Disease and CircRNADisease, respectively, using the 5-fold cross-validation approach. Furthermore, 25 of the top 30 circRNA-disease pairs with the best scores of MNMDCDA in the case study were validated by recent literature. Numerous experimental results indicate that MNMDCDA can be used as an effective computational tool to predict circRNA-disease associations and can provide the most promising candidates for biological experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbac479DOI Listing

Publication Analysis

Top Keywords

circrna-disease associations
16
mixed neighborhood
8
networks high-order
8
deep neural
8
associations circrnas
8
circrnas diseases
8
circrna disease
8
multi-source similarity
8
similarity networks
8
associations
6

Similar Publications

The study of the relationship between circular RNA (circRNA) and disease is crucial for understanding the mechanisms underlying disease onset. However, relying on biological experiments to explore all potential connections between circRNAs and diseases is both time-consuming and labor-intensive. While various prediction methods have been proposed, they still possess certain limitations in their ability to extract deep features.

View Article and Find Full Text PDF

As circular non-coding RNA (circRNA) is closely associated with various human diseases, identifying disease-related circRNAs can provide a deeper understanding of the mechanisms underlying disease pathogenesis. Advanced circRNA-disease association prediction methods mainly focus on graph learning techniques such as graph convolutional networks and graph attention networks. However, these methods do not fully encode the multi-scale neighbor topologies of each node, and the dependencies among the pairwise attributes.

View Article and Find Full Text PDF

Increasing biological research indicates that the expression levels of circRNAs fluctuate during the onset of various diseases, making them potential biomarkers for multiple conditions. Although numerous artificial intelligence-based computational methods are currently employed for circRNA-disease associations prediction, these methods often rely on a single objective function, which can lead to suboptimal prediction accuracy. To date, no method has designed a set of multi-objective functions specifically for the circRNA-disease prediction problem and optimized it using a non-dominated sorting genetic algorithm.

View Article and Find Full Text PDF

Numerous studies have demonstrated the regulatory role of circular RNA (circRNA) in various diseases, emphasizing the importance of identifying disease-related circRNAs. Although several computational models have been developed to predict circRNA-disease associations, the limited number of experimentally validated associations has resulted in the sparse association network. Therefore, there is a need for continuously improving circRNA-disease prediction models.

View Article and Find Full Text PDF

Circular RNA, a class of RNA molecules gaining widespread attentions, has been widely recognized as a potential biomarker for many diseases. In recent years, significant progress has been made in the study of the associations between circRNA and diseases. However, traditional experimental methods are often inefficient and costly, making computational models an effective alternative.

View Article and Find Full Text PDF